Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
doan trung hieu
Xem chi tiết
minh minh
Xem chi tiết
Nguyễn Thị Anh
2 tháng 8 2016 lúc 20:26

đề sai k bạn

Troll Thanh
Xem chi tiết
Nguyễn Hồng Thắm
Xem chi tiết
Nguyễn Hồng Thắm
6 tháng 10 2018 lúc 11:12

Ai giải giúp mình bài 1 với bài 4 trước đi

Park Chanyeol
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 7 2016 lúc 0:41

a) ĐKXĐ : \(0\le x\ne4\) 

b) \(A=\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{4\sqrt{x}-1}{x-4}\right):\frac{1}{x-4}\)  

\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\left(x-4\right)\)

\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

\(=\frac{-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=-1\)

Nguyen Nhu Nam
13 tháng 7 2016 lúc 23:46

\(A=\left[\frac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{x-4}\right]:\frac{1}{x-4}\)

\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{x-4}.\left(x-4\right)\)=\(=\frac{-1}{x-4}.\left(x-4\right)=-1\)

Vậy giá trị của A thỏa mãn mọi x và rút gọn lại còn -1

Nguyễn Ý Nhi
Xem chi tiết
Nguyễn Huy Tú
22 tháng 6 2021 lúc 9:35

a, \(P=\left(\frac{x\sqrt{x}}{\sqrt{x}+1}+\frac{x^2}{x\sqrt{x}+1}\right)\left(2-\frac{1}{\sqrt{x}}\right)\)ĐK : \(x\ge0;\sqrt{x}+1>0\)

\(=\left(\frac{x\sqrt{x}\left(x-\sqrt{x}+1\right)+x^2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{2\sqrt{x}-1}{\sqrt{x}}\right)\)

\(=\left(\frac{x^2\sqrt{x}-x^2+x\sqrt{x}+x^2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{2\sqrt{x}-1}{\sqrt{x}}\right)\)

\(=\left(\frac{x\sqrt{x}\left(x+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{2\sqrt{x}-1}{\sqrt{x}}\right)\)

\(=\frac{x\left(x+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

b, \(P=0\Rightarrow\frac{x\left(x+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=0\Leftrightarrow x\left(x+1\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=0;x=-1;x=\frac{1}{4}\)Kết hợp với đk vậy \(x=0;x=\frac{1}{4}\)

Khách vãng lai đã xóa
Phạm Tiến	Dũng
Xem chi tiết
Nguyễn Huy Tú
10 tháng 8 2021 lúc 16:41

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
10 tháng 8 2021 lúc 16:43

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
10 tháng 8 2021 lúc 16:45

Bài 3 : \(x\ge0;x\ne1\)

\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)

\(=\left(\frac{2+\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

b, Ta có : \(P=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{5}{4}\Rightarrow4\sqrt{x}+8=5\sqrt{x}-5\)

\(\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\)(tmđk )

Khách vãng lai đã xóa
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 10 2020 lúc 19:30

\(A=\left(\frac{2+\sqrt{x}}{x-1}+\frac{2}{\sqrt{x}+1}\right)\div\frac{3}{x+\sqrt{x}}\)

a) ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(=\left(\frac{2+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\left(\frac{2+\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{3}\)

\(=\frac{x}{\sqrt{x}-1}\)

b) Xét biểu thức\(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\)

Vì x > 1 nên áp dụng bất đẳng thức Cauchy ta có :

\(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge2\sqrt{\frac{x}{\sqrt{x}-1}\cdot4\left(\sqrt{x}-1\right)}=2\sqrt{4x}=4\sqrt{x}\)

=> \(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge4\sqrt{x}\)

=> \(\frac{x}{\sqrt{x}-1}+4\sqrt{x}-4\ge4\sqrt{x}\)

=> \(\frac{x}{\sqrt{x}-1}\ge4\)

Đẳng thức xảy ra khi x = 4 ( tm )

=> MinA = 4 <=> x = 4

Khách vãng lai đã xóa

bạn còn cách nào khác không

Khách vãng lai đã xóa
Huỳnh Trần Thảo Nguyên
Xem chi tiết