CMR : a4n+1-a chia hết cho 10 với mọi STN n
Bài 3 : CMR n5-n chia hết cho 30 vs mọi n là stn
Bài 4 : Cho p, q , r là các số nguyên tố lớn hơn 3. CMR p2+q2+r2 là hợp số
Bài 5 : CMR : a4n+1-a chia hết cho 10 vs mọi a là stn
cmr với mọi stn n ta luôn có( 10 mu 3n tat ca tru di 1) chia hết cho 3 mu n+2
CMR với mọi STN n thuộc N, ta có a) 7^4n -1 chia hết cho 5
\(7^{4n}-1=\left(7^4\right)^n-1=\left(2401\right)^n-1=\left(....1\right)-1=...0\Rightarrow7^{4n}-1\)chia hết cho n(vì có tận cùng là 0)
CMR: n2 + n + 1 không chia hết cho 9 với mọi n là STN
n2 + 11n + 39 không chia hết cho 49 với mọi n là STN
Với mọi stn a,b ta có a^2-b^2=(a-b)(b-a)
CMR: Với mọi stn n ta có n^3-n chia hết cho 6
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
Ngoài ra trong đó còn có 1 số chia hết cho 2 vì có 2 tự nhiên liên tiếp
Mà (2,3)=1 Do đó \(n^3-n\) chia hết cho 6
CMR: với mọi STN n<a thì tích (n+3)(n+6) chia hết cho 2
1.Cmr với mọi n là stn ta có 3n\(^2\) + 3n \(⋮\) 6
2. Cmr tích 4 stn liên tiếp thì chia hết cho 24
3. Cmr tích của 5 stn liên tiếp thì chia hết cho 120
1) Ta có: 3n2+3n
= 3(n2+n) \(⋮\) 3
Vì n là STN nên:
TH1: n là số tự nhiên lẻ.
\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2
\(\Rightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.
TH2: n là số tự nhiên chẵn.
\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)
3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.
Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)
3)
Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4
\Rightarrow
Cmr . ( n+1)(n+2)(n+3).....(2n) chia hết cho 2^n với mọi stn n
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
Vậy ta được điều phải chứng minh
Có đúng không thì cũng ủng hộ nha
giúp mk với
CMR A= (n+1).(n+8) +21 ko chia hết 49(với mọi n thuộc stn)
A = n^2 + n + 8n + 8 + 21
= n^2 + 9n + 29
4A = 4n^2 + 36n + 116 = (2n+9)^2 + 35
Gia sử A chia hết cho 49 => 4A chia hết cho 49
=>A chia hết cho 7 => (2n+9)^2 + 35 chia hết cho 7
=> (2n+9)^2 chia hết cho 7 (vì 35 chia hết cho 7)
=> 2n+9 chia hết cho 7 => (2n+9)^2 chia hết cho 49 ( vì 7 nguyên tố)
=> 4A= (2n+9)^2 + 35 ko chia hết cho 49 ( mâu thuẫn giả sử) => A ko chia hết cho 49
Vậy A ko chia hết cho 49