Cho tam giác ABC vuông tại A.Trên cạnh BC,lấy điểm D bất kì,kẻ DH vuông góc vơi AC tại H.Trên tia đối của tia HD,lấy điểm E sao cho HE=HD.Chứng minh:
a)AB//DH
b)Tam giác AHD =tam giác AHE
c)Góc BAD = góc ADH.
Cho tam giác ABC vuông tại A,điểm D thuộc cạnh BC.Kẻ DH vuông góc với AC(H thuộc AC).Trên tia đối của tia HD lấy điểm E sao cho HE = HD.Chứng minh rằng :
a) góc BAD = góc ADH
b) tam giác AHD = tam giác AHE
c) góc BAH = góc AEH
Cho tam giác ABC vuông tại A. M là điểm bất kì thuộc cạnh BC. Kẻ MI vuông góc với AC tại I. Trên tia đối của tia IM lấy điểm N sao cho MI = IN.
Chứng minh:
a) Góc BAM bằng góc AMI.
b) Tam giác MIC= tam giác NIC
c) Lấy K thuộc cạnh AB sao cho AK = MI. Chứng minh MK//AC.
d) AM=KI
a: IM vuông góc AC
AB vuông goc AC
=>IM//AB
=>góc BAM=góc IMA
b: XétΔCIM vuông tại I và ΔCIN vuông tại I có
CI chung
IM=IN
=>ΔCIM=ΔCIN
c: Xét tứ giác AKMI có
MI//AK
MI=AK
góc IAK=90 độ
=>AKMI là hình chữ nhật
=>MK//AC
d: AKMI là hình chữ nhật
=>AM=KI
Tam giác ABC vuông tại A.Trên BC lấy điểm K, từ K kẻ KH vuông góc vs AC tại H.Trên tia đối của tia HK lấy E sao cho HE=HK.Chứng minh rằng:
a) AB song song vs HK
b) tam giác AKE cân
c) Góc BAK = góc AEK
d) tam giác AEC -= tam giác AKC
Cho tam giác ABC vuông tại A. Lấy điểm D trên cạnh BC, kẻ DH vuông AC. Trên tia DH lấy điểm E sao cho HE =HD. CM:a) góc BAD =ADE;b)AD=AE ;c) góc AED=BAD
Cho tam giác ABC vuông tại A. Trên BC lấy một điểm D bất kì. Từ D vẽ DH vuông góc với AC (H thuộc AC) . Trên tia đối tia HD lấy điểm E sao cho HE=HD. Chứng minh: a, Góc BAD=góc ADH b,góc ADE=góc AED c, góc BAD = góc AEH
Cho tam giác ABC nhọn, đường cao AH vuông góc vs BC tại H.Trên tia đối của tia HA lấy điểm D sao cho HD=HA.
a. CM: tam giác AHB= tam giác DHB
b. CMR: BC là tia phân giác của góc ABD
c. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy F sao cho MF=MA. Từ F kẻ FN vuông góc vs BC( N thuộc BC), CM: HD=NF
a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:
\(AH=DH\left(gt\right)\)
BH là cạnh chung
\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)
\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)
b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )
A)Xét t/giác AHB và t/giác DHB có
AH=AD(gt)
Góc AHB=góc DHB=900
BH là cạnh chung
Suy ra t/giác AHB=t/giác DHB(c-g-c)
B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)
Suy ra :BC là tia phân giác của góc ABD
C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N
AM=FM(gt)
Góc AHM= góc FMN(2 góc đối đỉnh)
Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)
Suy ra AH=NF (2 cạnh tương ứng)
Mà AH=HD (gt)
Suy ra NF=HD
Chúc bn hc tốt
Cho tam giác ABC vuông tại A có đường phân giác BD ( D thuộc cạnh AC ). Trên tia đối tia AC lấy điểm E sao cho AE = AD . Kẻ DH vuông góc với BC tại H
a) So sánh BD và BC.
b) Chứng minh: tam giác BED cân.
c) Trên tia đối tia HD lấy điểm K sao cho HK = HD. Chứng minh BE = BK .
d) Gọi G là giao điểm của EH và AK. Chứng minh GK = 2GH .
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài cạnh BC.
b) Tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC tại H. Chứng minh rằng: tam giác BAD = tam giác BHD và HD = AD.
c) Trên tia đối của tia AB lấy điểm M sao cho AM = HC. Chứng mịh: AH // CM.
a) Áp dụng định lý Py-ta-go, ta có:
BC² = AB² + AC²
BC² = 3² + 4²
BC² = 9 + 16 = 25
⇒ BC =√25 = 5 cm
b) Xét ΔABD ( A = 90*) và ΔHBD ( H = 90*), có
BD chung
ABD = HBD ( BD là tia phân giác của góc ABC )
⇒ ΔABD = ΔHBD ( cạnh huyền - góc nhọn)
c) ΔHDC, có: BHD là góc vuông
⇒ DC là cạnh lớn nhất
⇒ HD < DC
Mà HD = DA (ΔABD = ΔHBD)
⇒ DA < DC (đpcm)
a) Xét ΔABCΔABC vuông tại A có :
\( A B ² + A C ² = B C ² (đ/l Py-ta-go)\)
\( ⇒ 3 ² + 4 ² = B C ²\)
\(⇒ B C ² = 25\)
\(⇒ B C = 5 ( c m )\)
Vậy \(BC=5cm\)
b) Xét \(Δ A B D và Δ H B D\)có :
\(+ ∠ B A D = ∠ B H D = 90 °\)
\(+ B D c h u n g\)
\(+ ∠ A B D = ∠ C B D \) (BD là phân giác của ∠B)
\( ⇒ Δ A B D = Δ H B D (ch-gn)\)
Vậy \(Δ A B D = Δ H B D\)
tôi chx bt lm
xin lỗi nhé
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác góc B cắt AC tại D. Kẻ DH vuông góc với BC. Lấy điểm E trên cạnh AC sao cho AE = AB. Đường thẳng vuông góc với AE tại E cắt DH tại K. Qua B kẻ đường vuông góc với EK tại I. Chứng minh:a, BA = BH (Đã chứng minh)b, Góc DBK = 45 độ (Đã chứng minh)c, BC = IK + ACMong được mọi người giúp đỡ! Em xin cảm ơn trước ạ!
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(hai cạnh tương ứng)