Cho tam giác ABC cân tại A.AM là phân giác của góc BAC.Từ M kẻ MH vuông góc với AB,kẻ MK vuông góc với AC.
a,CMR: AM vuông góc với BC
b,CMR: tam giác HMK là tam giác cân
c,CMR: HK//BC
d,Khi MH+MK=AM thì tam giác ABC đều.Hãy chứng minh điều đó
cho tam giác ABC có AB = AC , kẻ AM vuông góc BC (M thuộc BC) a, CMR : tam giác AMB = tam giác AMC b, CMR : B = C và AM là phân giác của góc BAC c, kẻ MH , MK lần lượt vông góc với AB , AC . CMR : AH = AK
#\(N\)
`a,` Xét Tam giác `AMB` và Tam giác `AMC` có:
`AM` chung
`AB = AC (g``t)`
\(\widehat{AMB}=\widehat{AMC}=90^0\)
`=>` Tam giác `AMB =` Tam giác `AMC (ch-cgv)`
`b,` Vì Tam giác `AMB = ` Tam giác `AMC (a)`
`=>` \(\widehat{B}=\widehat{C}\) `(2` góc tương ứng `)`
`=>` \(\widehat{BAM}=\widehat{CAM}\) `( 2` góc tương ứng `)`
`=> AM` là tia phân giác của \(\widehat{BAC}\)
`c,` Xét Tam giác `AHM` và Tam giác `AKM` có:
`AM` chung
\(\widehat{HAM}=\widehat{KAM}(CMT)\)
`=>` Tam giác `AHM =` Tam giác `AKM (ch-gn)`
`=> AH = AK (2` cạnh tương ứng `)`
Cho Tam giác ABC cân tại A, (A<90°) . Tia phân giác của góc A cắt cạnh BC tại M. Từ M kẻ MH vuông góc với AB , MK vuông góc vs AC
a CM tam giác AMB = tam giác AMC
b CM AM vuông góc vs BC
c CM MH=MK
d CM MA là tia phân giác của góc HMK
e Qua A kẻ đường thẳng song song với BC cắt MH tại E, cắt MK tại F. CM tam giác MEF cân
f gọi AM cắt HK tại I Tính AI biết AK=5cm HK=6cm
Giúp mình với mình đang cần gấp.Cảm ơn
Cho tam giác ABC có M là trung điiểm của BC, AM cũng là đường cao. Kẻ MH vuông góc với AB, MK vuông góc với AC. CMR :
a) Tam giác AMB = tam giác AMC
b) góc B = góc C
c) MH=MK
a/xét tg AMB và tg AMC:
góc AMB=góc AMC(=90 độ)
BM=CM(giả thiết)
AM:chung
\(\Rightarrow\)tg AMB=tg AMC(C-G-C)
b/Theo phần a ta có:tg AMB=tg AMC
\(\rightarrow\)góc B=góc C(2 góc tương ứng)
c/xét tg BHM và tg CKM:
góc B=góc C(theo phần b)
góc BHM=góc MKC=90 độ
BM=MC(gt)
\(\Rightarrow\)tg BHM= tg CKM(cạnh huyền-góc nhọn)
\(\rightarrow\)MH=MK(2 cạnh tương ứng)
cho tam giác ABC cân tại A .Gọi M là trung điểm của BC
a, Chứng minh AM vuông góc với BC
b , Chứng minh góc BAM = góc CAM
c, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K chứng minh tam giác MHK cân tại M
d, Chứng minh tam giác AHK cân tại A
e, Chứng minh HK song song với BC
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc BAC
hay góc BAM= góc CAM
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
hay ΔMHK cân tại M
d: Xét ΔAHK có AH=AK
nên ΔAHK cân tại A
e: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
Cho tam giác ABC cân tại A và M là trung điểm BC. CMR:
a) Tam giác ABM = Tam giác ACM
b) Từ M vẽ MH vuông góc với AB, MK vuông góc với AC. CMR: BH = CK
c) Từ B kẻ BP vuông góc với AC, BP cắt MH tại I. CMR: tam giác IBM cân
cho tam giác abc cân tại a gọi m là trung điểm của bc kẻ MH vuông góc với AB tại H. MK vuông góc với AC tại K
CMR a) tam giác MHB=tam giác MKC
b) tam giác AMH= tam giác AMK
C) AM vuông góc vs BC
GIÚP MÌNH VỚI MÌNH CẦN GẤP
a, xét tam giác MBH và tam giác MCK ta có:
góc MHB= góc MKC=90 độ
BM=MC(gt)
góc B =góc C(gt)
vậy tam giác BMH = tam giác CMK(ch-gn)
b, xét tam giác AMH và tam giác AMK có:
AM chung
MH=MK( do tam giác BMH= tam giác CMK)
góc AHM= góc AKM=90 độ
suy ra tam giác AMH= tam giác AMK( ch-cgv)
ta có: góc AMH= góc AMK( tam giác AMH= tam giac AMK)
góc BMH= góc CMK( do 2 tam giác câu a bằng nhau)
suy ra góc AMH+ góc BMH= góc AMK+ góc CMK
mà góc BMH+góc HMA+ góc AMk+ góc CMK= 180 độ
suy ra góc AMH+ góc BMH= góc AMK+ góc CMK=180 độ chia 2=90 độ
suy ra AM vuông góc với BC( đpcm)
Cho tam giác ABC vuông cân tại A. Kẻ AM vuông góc với BC tại M. Gọi E là một điểm nằm giữa M và C. Kẻ BH, CK vuông góc AE tại H và K. CMR: MH = MK
bạn trên làm đúng rồi đó chắc chắn 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
Nếu tam giác ABC mà vuông tại A thì 2 tam giác ABM và ACM không thể bằng nhau đc
Mk nghĩ bn nên xem lại đề bài.
Cho tam giác ABC vuông tại A và AB=AC. Qua A vẽ đường thẳng xy sao cho B và C nằm cùng phía với xy.
a)CMR: tam giác AHB=tam giác CKA
b)CMR: HK = BH+CK
c)Gọi M là trung điểm của BC. CMR: AM vuông góc BC và AM là phân giác của góc BAC, AM = \(\frac{1}{2}\) BC.
d) CMR: MHK vuông góc tại M, MH=MK