So sánh C=1/1!+1/2!+1/3!+.....+1/2019! với 7/4
So sánh:
\(C=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}\)với \(\frac{7}{4}\)
Ta có: \(\frac{1}{5!}=\frac{1}{1\cdot2\cdot3\cdot4\cdot5}< \frac{1}{3\cdot4\cdot5}\)
\(\frac{1}{6!}< \frac{1}{1\cdot2\cdot3\cdot4\cdot5\cdot6}< \frac{1}{4\cdot5\cdot6}\)
..............
\(\frac{1}{2019!}=\frac{1}{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2019}< \frac{1}{2017\cdot2018\cdot209}\)
Do đó
\(C< 1+\frac{1}{2}+\frac{1}{2\cdot3\cdot4}+\frac{1}{4\cdot5\cdot6}+....+\frac{1}{2017\cdot2018\cdot2019}\)
\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+.....+\frac{2019-2017}{2017\cdot2018\cdot2019}\right)\)
\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2018\cdot2019}\right)< \frac{3}{2}+\frac{1}{2}\cdot\frac{1}{1\cdot2}\)
\(\Rightarrow C< \frac{7}{4}\)
Nguồn: Nock Nock
\(C=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}\)
\(=\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2.3}+...+\frac{1}{1.2.3...2019}\)
\(=\frac{1}{1}+\frac{1}{1}.\frac{1}{2}+\frac{1}{1}.\frac{1}{2}.\frac{1}{3}+...+\left(\frac{1}{1}.\frac{1}{2}.\frac{1}{3}...\frac{1}{2018}.\frac{1}{2019}\right)\)
\(=\left(1.1.1....1.1\right)+\left(\frac{1}{2}.\frac{1}{2}.\frac{1}{2}...\frac{1}{2}.\frac{1}{2}\right)+\left(\frac{1}{3}.\frac{1}{3}.\frac{1}{3}...\frac{1}{3}.\frac{1}{3}\right)+...+\left(\frac{1}{2018}.\frac{1}{2018}\right)+\frac{1}{2019}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}+\frac{1}{2019}\)
Nhận xét rằng:
\(1< \frac{7}{8076};2< \frac{7}{8076};3< \frac{7}{8076};...;\frac{1}{1154}>\frac{7}{8076};\frac{1}{1155}>\frac{7}{8076};...;\frac{1}{2018}>\frac{7}{8076};\frac{1}{2019}>\frac{7}{8076}\)
Do đó:
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}+\frac{1}{2019}>\frac{7}{8076}+\frac{7}{8076}+...+\frac{7}{8076}\)
Vì tổng C có 2019 số hạng, suy ra \(C>2019.\frac{7}{8076}=\frac{7}{4}\)
Mình nhầm một chút:
\(1>\frac{7}{8076};\frac{1}{2}>\frac{7}{8076};\frac{1}{3}>\frac{7}{8076};...;\frac{1}{1154}< \frac{7}{8076};\frac{1}{1155}< \frac{7}{8076};...;\frac{1}{2019}< \frac{7}{8076}.\)
Do phân số lớn hơn chiếm phần nhiều nên:
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}>\frac{7}{8076}+\frac{7}{8076}+...+\frac{7}{8076}\)
\(\Rightarrow C>2019.\frac{7}{8076}=\frac{7}{4}\)
C=1/1!+1/2!+...+1/2019!
So sánh C với 7/3.
Mình đang cần gấp bạn nào nhanh mik sẽ tik
So sánh:
C = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}và\frac{7}{4}\)
Tham khảo nhé
Câu hỏi của Assassin_07 - Toán lớp 7 - Học toán với OnlineMath
Nguyễn Trần Nhật Anh , đâu có cầnnn
a) 10.x3^2.3^3=7^4:7
b)1+2^3+3^3-4^2.x=20
c)So sánh 4^333 và 3^444
d)Cho A=1+5+5^2+5^3+5^4+...+5^2018+5^2019. Tìm 4*A+1
Làm hộ mik với đang cần gấp. Thankkkkk
p=1/3-2/3^2+3/3^3-4/3^4+...+2019/3^2019-2020/3^2020. So sánh P với 3/16
giúp mình với
so sánh B = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.....+\frac{1}{1+2+3+4+...+2019}\)
với 1
B = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}...+\frac{1}{1+2+3+...+2019}\)
= \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2019\times1010}\)
= \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2019\times2020}\right)\)
= \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2019\times2020}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{2020}\right)\)
\(=2\times\frac{1009}{2020}\)
\(=\frac{1009}{1010}< \frac{1010}{1010}=1\)
\(\Rightarrow B< 1\)
so sánh A với \(\frac{3}{4}\)
\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+................+\frac{1}{1+3+...........+2019}\)
Trả lời giúp mình 3 câu này nha! AI làm đúng mình sẽ tick cho
a, So sánh các phân số sau: A= 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/2019x2020 với 1
b, So sánh các phân số sau : A= 2018/2019 + 2019/2020 + 2020/2018 với 3
c, So sánh các phân số sau F= 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45 với 1/2
Mong các bạn trả lời câu hỏi của mình =>
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
Thank you bạn dcv new ^ ^
nhầm dấu rồi bé hơn 1 chứ:v bạn sửa lại hộ mình nhà
a. So sánh C và D biết: C = 1957/ 2007 với D = 1935/ 1985
b. Cho: A = 2016 mũ 2016 + 2/ 2016 mũ 2016 - 1 và B = 2016 mũ 2016/2016 mũ 2016 - 3. Hãy so sánh A và B
c.So sánh M và N biết: M = 10 mũ 2018 + 1/ 10 mũ 2019 + 1 ; N = 10 mũ 2019 +1/ 10 mũ 2020 + 1
MAI THI RỒI MÀ CHƯA BIẾT GIẢI BÀI NÀY NHƯ THẾ NÀO ?
NÊN NHỜ MỌI NGƯỜI GIẢI GIÚP. CẢM ƠN TRƯỚC