Chứng minh rằng: (1/26+1/27+...+1/50)÷(1/1.2+1/3.4+...+1/49.50)=1
Chứng Minh Rằng: 1/1.2+1/3.4/1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
Chứng minh rằng:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{49}+\dfrac{1}{50}\)
Chứng minh 1/1.2 + 1/3.4 +1/5.6 +...... + 1/49.50 =1/26 + 1/27 + ... +1/50
Chứng minh rằng:
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
GIÚP MÌNH VS <33333
Chứng minh rằng:
a) 1.2 - 1 phần 2! + 2.3 -1 phần 3! + 3.4 -1/4! + ... + 99.100 -1 /100! < 2
b) 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + ... + 1/50
chứng minh rằng
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
Chứng minh rằng:\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
=> đpcm
Ủng hộ mk nha !!! ^_^
\(\text{Ta có :}\)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\text{Ta có :}\) \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Chứng minh rằng:
A=1\1.2 + 1\3.4 + 1\5.6 + ... + 1\49.50 = 1\26 + 1\27 + 1\28 + ... + 1\50
Có lời giải hay nhất 3 li ke
1:
- Ta có x^2+x+1=0
=> x^2+x=-1
=> x=x^2+1
mà x^2 x
=> x^2+1 x
=> Không tìm được giá trị của x
=> A không có giá trị
2.
Từ n2+n+1=0⇒n≠1⇒(n−1)(n2+a+1)=0⇒a3−1=0⇒a3=1n2+n+1=0⇒n≠1⇒(n−1)(n2+a+1)=0⇒a3−1=0⇒a3=1
Xét 3 trường hợp:
_ VỚi n = 3k thì A=(n3)k+1(n3)k=1+1=2(n3=1)A=(n3)k+1(n3)k=1+1=2(n3=1)
_ Với n = 3k + 1 thì A=(n3)k.n+1(n3)k.n=n+1n=n2+1n=−nn=−1A=(n3)k.n+1(n3)k.n=n+1n=n2+1n=−nn=−1
_Với n = 3k+2 thì A=(n3)k.n2+1(n3)k.n2=n2+1n2A=(n3)k.n2+1(n3)k.n2=n2+1n2
Ta có (n+1n)2=n2+1n2+2.n.1n=n2+1n2+2=1(n+1n)2=n2+1n2+2.n.1n=n2+1n2+2=1
A = 1 -2 = -1
Mình không biết đúng không nha
ta có:
1/1.2+1/3.4+1/5.6+...+1/49.50
=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)
=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2
=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)
=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50
hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
Ta biến đổi vế phải :
1-1/2+1/3-1/4+.....+1/49-1/50
=(1+1/3+1/5+....+1/49)-(1/2+1/4+1/6+.......+1/50)
=(1+1/2+1/3+.....+1/49+1/50)-2(1/2+1/4+1/6+......+1/50)
=(1+1/2+...+1/50)-(1+1/2+1/3+....+1/25)
=1/26+1/27+.......+1/50
Vậy 1/26+1/27+1/28+.....+1/50=1-1/2+1/3-1/4+......+1/49-1/50
Mình không bấm phân số được mong mấy bạn thông cảm
1. Cho A = 1/(1.2)+1/(3.4)+...+1/(99.100).
Chứng minh 7/12 < A <5/6
2.Chứng minh:
1/(1.2)+1/(3.4)+...+1/(49.50)=1/26+1/27+...+1/50
1
Ta có :A=1/1.2+1/3.4+...+1/99.100=1/2+1/12+...+1/9900
7/12=1/2+1/12
Vì 1/2+1/12<1/2+1/12+...+1/9900
Nên: 7/12<A (1)
Lại có:A=1/1.2+1/3.4+...+1/99.100
=1-1/2+1/3-1/4+...+1/99-1/100
=(1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
5/6=1-1/2+1/3
vì: 1-1/2+1/3 < (1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
nên 5/6 < A (2)
Từ (1) và (2) suy ra 7/12<A<5/6