tìm x,y thuộc : 2xy+3y-4x=11
tìm n thuộc Z : 4n-5 chia hết cho 3n -1
Tìm n thuộc Z biết
4n+3 chia hết cho 3n-2
2n+3 chia hết chon-1
n^2+5n-1 chia hết cho n-3
n^2 -5 chia hết cho n+4
2) Tìm x,y thuộc Z
xy+2y-3x=11
4x-xy+2y+3=0
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
2n+3 chia hết cho n-1
<=> 2n+3-2(n-1) chia hết cho n-1
<=>5 chia hết cho n-1
<=> n-1 E {-1;1;5;-5}
<=> n E {0;2;6;-4}
bài nào chứ mấy bài này dài ngoằng =((
Vì vai trò m, n như nhau, giả sử m≥n
Xét các trường hợp:
Nếu m=n thì 2m+1⋮m⇒m=n=1 Nếu m>n, đặt 2n+1=pm (p∈N∗)Vì 2m>2n⇒2m>2n+1=pm⇒p<2⇒p=1
Khi p=1 thì: 2n+1=m⇒2(2n+1)+1=2m+1⋮n⇒4n+3⋮n⇒3⋮n⇒n=1;3
Với n=1 thì m=3
Với n=3 thì m=7
Vậy (m;n)={(1;1); (3;1); (7;3)}
Câu 1: Tìm x thuộc Z biết:
a) 3n+5 chia hết 2n-1
b) n2+3n+7 chia hết n-2
Câu 2: Tìm x,y nguyên biết:
a) xy-2x+y=7
b) xy+3x+2y=-5
c) 2xy-3x+3y=4
Câu 1: Tìm n thuộc Z biết
a) 3n+5 chia hết 2n-1
b) n2+3n+7 chia hết n-2
Câu 2: Tìm x,y nguyễn biết:
a) xy-2x+y=7
b)xy+3x+2y=-5
c) 2xy-3x+3y=4
Bài 1: Tìm x,y thuộc Z biết:
a, xy - 2x+y =5
b, 2xy - x+y=0
Bài 2: Tìm n thuộc Z biết:
a, (n2 - n+5) chia hết cho (n-1)
b, (n2 +n+7) chia hết cho (n+1)
c, (n2 + 3n + 3) chia hết cho (n+1)
các bạn giải giúp mik với ạ mik đang cần gấp
Tìm n thuộc Z biết:
a) -7n + 3 chia hết cho n -1
b) 4n + 5 chia hết cho 4-n
c) 3n+4 chia hết cho 2n +1
d) 4n + 7 chia hết cho 3n + 1
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
Tìm x,y thuộc Z biết
a) 4x-xy+2y+3
b) 3y-xy-2x-5=0
c) 2xy-x-y=100
bài 2 cho a,b thuộc z biết
ab-ac+bc-c^2=-1
chứng minh a và b là 2 số đối nhau
bài 3. cho a,b,c thuộc Z và a+c+c=6
chứng minh a^3+b^3+c^3 chia hết cho 6
bài 4 cho x,y thuộc Z chứng minh nếu 6x+11y chia 31 thì x+7y chia hết cho 31
bài 5 chứng minh với mọi n thuộc Z thì (n-1)(n+2)+12 ko chia hết cho 9
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
Tìm m thuộc Z : 4n-5 chia hết cho 3n-1
\(4n-5⋮3n-1\Rightarrow12n-15⋮3n-1\Leftrightarrow12n-15-12n+4⋮3n-1\Leftrightarrow-11⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\Rightarrow n\in\left\{0;4\right\}\left(\text{vì 3n-1 chia 3 dư 2}\right)\)
1,tim n thuộc z
a,2n-1 chia hết cho n-3 b,3n+1 chia hết cho2n-7
2,tim x,y thuộc z
4xy +2xy+2x=9
2n-1 chia hết cho n-3
(2n-6)+5 chia hết cho n-3
2(n-3)+5 chia hết cho n-3
=> 5 chia hết cho n-3
Vậy n-3 thuộc Ư(5)={1,-1,5,-5}
Ta xét từng trường hợp của x:
Với n-3=1 thì x=4
Với n-3=-1 thì x=2
Với n-3=5 thì x=8
Với n-3=-5 thì x=-2
Vậy x = 4,2,8,-2.
Tìm n thuộc Z để:
a, 4n-1 chia hết cho 3n+2
b, 3n+1 chia hết cho n2+n+1
c, n2 chia hết cho 2n-1
d, 3n+5 chia hết cho n-2