Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi minh nguyet
Xem chi tiết
Hoàng Thị Ngọc Anh
20 tháng 12 2016 lúc 23:10

x y A B M N H I

a) Xét ΔMAO vuông tại A và ΔNBO vuông tại B có:

OA = OB (GT)

góc O chung

=> ΔMAO = ΔNBO (cạnh huyền - góc nhọn)

=> OM = ON ( 2 cạnh tương ứng ) → đpcm

Ta có OA + AN = ON

OB + BM = OM

mà OM = ON ( cm trên ); OA = OB

=> AN = BM → đpcm

b) Xét ΔNOH và ΔMOH có;

ON = OM (cm trên)

OH chung

NH = MH (suy từ gt)

=> ΔNOH = ΔMOH (c.c.c)

=> góc NOH = MOH ( 2 góc tương ứng )

Do đó OH là tia pg của góc xOy → đpcm (1)

c) Vì ΔMAO = ΔNBO nên góc OMA = ONB (2 góc tương ứng) hay ANI = BMI.

Xét ΔNAI và ΔMBI có:

góc ANI = BMI (cm trên)

AN = BM ( câu a)

góc NAI = MBI (= 90 )

=> ΔNAI = ΔMBI ( g.c.g )

=> AI = BI (2 cạnh tương ứng)

Xét ΔAOI và ΔBOI có :

AI = BI (cm trên)

góc OAI = OBI (=90)

OI chung

=> ΔAOI = ΔBOI ( c.g.c )

=> góc AOI = BOI ( 2 góc tương ứng )

Do đó OI là tia pg của xOy (2)

Từ (1) ở câu b và (2) suy ra O, H, I thẳng hàng.

Chúc học tốt nguyen thi minh nguyet hihi

soyeon_Tiểubàng giải
20 tháng 12 2016 lúc 22:29

a) Xét t/g OAM vuông tại A và t/g OBN vuông tại B có:

OA = OB (gt)

O là góc chung

Do đó, t/g OAM = t/g OBN ( cạnh góc vuông và góc nhọn kề)

=> AMO = BNO (2 góc tương ứng)

OM = ON (2 cạnh tương ứng) (1)

Lại có: OB = OA (gt)

=> OM - OB = ON - OA

=> BM = AN (2)

(1) và (2) là đpcm

b) Xét t/g HAN vuông tại A và t/g HBM vuông tại B có:

AN = BM (câu a)

ANH = BMH (câu a)

Do đó, t/g HAN = t/g HBM ( cạnh góc vuông và góc nhọn kề)

=> HN = HM (2 cạnh tương ứng)

Dễ dàng c/m t/g NOH = t/g MOH (c.c.c)

=> NOH = MOH (2 góc tương ứng)

=> OH là phân giác NOM hay OH là phân giác xOy (đpcm)

c) Dễ dàng c/m t/g NOI = t/g MOI (c.c.c)

=> NOI = MOI (2 góc tương ứng)

=> OI là phân giác NOM

Mà OH cũng là phân giác NOM

Nên O,H,I thẳng hàng (đpcm)

 

Phan Ngoc Diep
Xem chi tiết
nguyen munh tri
Xem chi tiết
Minh  Ánh
Xem chi tiết
Tran Thu Phuong
Xem chi tiết
nguyễn thị nga
Xem chi tiết
Đỗ Thị Dung
4 tháng 3 2019 lúc 12:18

a, xét tam giác AOC và tam giác BOC có:

                    OC chung

                   \(\widehat{BOC}\)=\(\widehat{AOC}\)(GT)

\(\Rightarrow\)tam giác AOC = tam giác BOC( CH-GN)

b,gọi F là giao điểm của OC và AB

          xét tam giác FOA và tam giác FOB có:

                         OA=OB( câu a)

                          \(\widehat{FOA}\)=\(\widehat{FOB}\)(GT)

                         OF cạnh chung

\(\Rightarrow\)tam giác FOA= tam giác FOB( c.g.c)

\(\Rightarrow\)\(\widehat{AFO}\) =\(\widehat{BFO}\)2 góc này ở vị trí kề bù nên \(\widehat{AFO}\)=\(\widehat{BFO}\)=90 độ\(\Rightarrow\)OC là đường trung trực của đg thẳng AB

Mai
Xem chi tiết
Trương Hồng Hạnh
18 tháng 6 2017 lúc 12:37

Ta có hình vẽ:

x O y z H A B D C

a/ Xét hai tam giác vuông OAH và OBH có:

góc AOH = góc BOH (Gt)

OH: cạnh chung

=> tam giác OAH = tam giác OBH

=> OA = OB (hai cạnh tương ứng)

Vậy tam giác OAB cân tại O

b/ Ta có: OA = OB (cmt)

Ta lại có: AH = BH (t/g OAH = t/g BOH)

=> OH là trung trực của AB

=> OH vuông góc vs AB

hay OH là đường cao của tam giác OAB

Ta có: AD vuông góc với OB

hay AD là đường cao của tam giác OAB

Mà AD cắt OH tại C

=> C là trực tâm của tam giác

=> BC vuông góc vs OA

hay BC vuông góc vs Ox

Thanh Nga Nguyễn
Xem chi tiết
bun dau mam tom
Xem chi tiết