1,CMR với mọi số nguyên tố p,p>2 thì 4p+1 không phải là số chính phương
1,CMR với mọi số nguyên tố p,p>2 thì 4p+1 không phải là số chính phương
Chứng minh rằng với mọi số tự nhiên n thì UCLN (21n + 4 ;14n + 3 ) = 1
CMR : Nếu p là số nguyên tố lớn hơn 3 và 2p + 1 cũng là số nguyên tố thì 4p + 1 là hợp số .
CMR: mọi số nguyên tố lớn hơn 3 đều có dạng 3k+1 hoặc 3k+2.
CMR: Nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 lầ hợp số.
Giải chi tiết ra giùm mik nha!!!
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số (.)
tick nhé
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
1. a.Tìm tất cả các số tự nhiên n để n4+4 là số nguyên tố
b. Cho P= 1.2.3+2.3.4+3.4.5+4.5.6+.....+n(n+1)(n+2) với n nguyên dương
CMR: 4P=n(n+1)(n+2) và từ đó suy ra 4P+1 là số chính phương
\(1a.\)
Ta có: \(n^4+4=\left(n^2\right)^2+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)
Vì \(n^2+2n+2>n^2-2n+2\) với mọi \(n\in N\)
nên để \(n^4+4\) là số nguyên tố thì \(n^2-2n+2=1\) \(\Leftrightarrow\) \(\left(n-1\right)^2=0\) \(\Leftrightarrow\) \(n-1=0\) \(\Leftrightarrow\) \(n=1\)
Vậy, với \(n=1\) thì \(n^4+4\) là số nguyên tố
MỌI NGƯỜI GIÚP EM VỚI
Bài 1: CMR: \(4n^4+4n^3+6n^2+3n+2\:\)không là số chính phương \(\left(n\inℕ^∗\right)\)
Bài 2: Cho A là tích n số nguyên tố đầu tiên. CMR A+1 không là số chính phương \(n\ge2\)
Bài 3: Cho \(B=1.3.5...2017\). CMR 2B-1, 2B, 2B+1 không là số chính phương
Bài 3
1) Cho p là số nguyên tố không nhỏ hơn 5 và 2p+1 cũng là số nguyên tố. Hỏi 4p+1 là số nguyên tố hay hợp số?
2) Cho 3 số chính phương a; b; c. Chứng tỏ rằng (a-b) (b-c) (c-a)
Cho p là tích 2016 số nguyên tố đầu tiên . CMR: p+1 và p-1 không phải số chính phương
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP
CMR :
a) Với mọi n nguyên dương thì \(n^2+n+1\)không là số chính phương
b) Tìm n để \(n^2+n+1\)là số chính phương
a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n
như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2
mà n2 và (n+1)2 là 2 số chính phương liên tiếp
=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)
CMR với mọi n thuộc N , n> 0 thì n^4+2n^3+2n^2+2n+1 không phải là số chính phương