Với mọi số chính phương lẻ ta luôn dễ dàng chứng minh nó chia 8 dư 1
Thật vậy, \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\)
Do \(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp \(\Rightarrow4k\left(k+1\right)⋮8\)
\(\Rightarrow4k\left(k+1\right)+1\) chia 8 dư 1
Do \(p>2\Rightarrow p\) lẻ \(\Rightarrow p=2n+1\)
\(\Rightarrow4p+1=4\left(2n+1\right)+1=8n+5\) chia 8 dư 5 nên không thể là số chính phương lẻ (đpcm)