Tìm x thuộc Z để có giá trị lớn nhất
a) A = \(\frac{3}{2-x}\)
b) B = \(\frac{35-3x}{7-x}\)
Cho A = \(\frac{3\left(x-1\right)^2+12}{\left(x-1\right)^2+2}\)
a) Tìm x thuộc Z để A có giá trị thuộc Z
b) Tìm x để A có giá trị lớn nhất
a, \(A=\frac{3\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)
Để \(A\in Z\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Mà \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)
\(\Rightarrow\left(x-1\right)^2+2\in\left\{2;3;6\right\}\)
Ta có bảng:
(x - 1)2 + 2 | 2 | 3 | 6 |
x | 1 | 2 | 3 |
Vậy...
b, Theo câu a ta có: \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{1}{\left(x-1\right)^2+2}\le\frac{1}{2}\Rightarrow\frac{6}{\left(x-1\right)^2+2}\le\frac{6}{2}=3\)
Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1
Vậy GTLN của A = 3 khi x = 1
sr câu b mình lm thiếu
Theo câu a ....
=> \(A\le3+3=6\)
Dấu "=" xảy ra khi x=1
Vậy GTLN của A = 6 khi x=1
Cho A=\(\frac{3\left(x-1\right)^2+12}{\left(x-1\right)^2+2}\)
a)tìm X thuộc Z để A có giá trị thuộc Z
b) Tìm X để A có giá trị lớn nhất
a) Ta có :
\(A=\frac{3.\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3.\left(x-1\right)^2+3.2+6}{\left(x-1\right)^2+2}=\frac{3.\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)
Để A có giá trị nguyên \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)\(\in\)Z \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)\(\in\)Z \(\Leftrightarrow\)( x - 1 )2 + 2 \(\in\)Ư ( 6 )
\(\Rightarrow\)( x - 1 )2 + 2 \(\in\){ 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
Lập bảng ta có :
(x-1)2+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | loại | loại | 0 | loại | \(\orbr{\begin{cases}2\\0\end{cases}}\) | loại | \(\orbr{\begin{cases}3\\-1\end{cases}}\) | loại |
Vậy x = { 0 ; 2 ; 3 ; -1 }
b) để A có giá trị lớn nhất \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)( x - 1 )2 +2 có GTNN
Mà ( x - 1 )2 \(\ge\)0 \(\Rightarrow\)( x - 1 )2 + 2 \(\ge\)2 \(\Rightarrow\)GTNN của ( x - 1 )2 + 2 là 2 \(\Leftrightarrow\)x = 1
Vậy A có GTLN là : \(\frac{3.\left(1-1\right)^2+12}{\left(1-1\right)^2+2}=\frac{12}{2}=6\)\(\Leftrightarrow\)x = 1
Tìm x thuộc Z để :
a) A có giá trị nguyên : \(\frac{2x-3}{3x-2}\)
b) B có giá trị nguyên : \(\frac{x-1}{x^2+1}\)
a) \(3A=\frac{6x-9}{3x-2}=\frac{2\left(3x-2\right)-5}{3x-2}=2-\frac{5}{3x-2}\)
A nguyên <=> 3A nguyên <=> 5/3x-2 nguyên ( 2 nguyên rồi) <=> 3x-2 thuộc Ư(5) <=> 3x-2 thuộc (+-1; +-5)
đến đây lập bảng xét giá trị nha
b) \(2B=\frac{2x-2}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1+2\right)}{x^2+1}=1-\frac{\left(x+1\right)^2+2}{x^2+1}\)
bài này mình chỉ làm tìm Min, Max thôi chứ kiểu này thì mình nghĩ k tìm đc giá trị nguyên đâu
Cho B=\(\frac{x+5}{x-4}\),(x thuộc Z;x không bằng 4)
a,Tìm x thuộc Z đẻ B có giá trị nguyên
b,Tìm x thuộc Z để B có giá trị lớn nhất
c,Tìm x thuộc Z để B có giá trị nhỏ nhất
AI LÀM XONG NHANH NHẤT ĐƯỢC 2 TICK
THANHKS CHO BẠN NÀO LÀM HỘ MÌNH
a
B=x-4+9/x-4
B=X-4/X-4+9/X-4
B=1+9/x-4
để B thuộc z suy ra 9/x-4 thuộc z
suy ra x-4 thuộc vào Ư của 9
x-4=1 suy ra x=5 suy ra B=10
x-4=3 suy ra x=7 suy ra B=4
x-4=9 suy ra x= 13 suy ra B=2
x-4=-1 suy ra x= 3 suy ra B=-8
x-4=-3 suy ra x=1 suy ra B=-2
x-4=-9 suy ra x=-5 suy ra B=0
b
ta có :
B= 1+9/x-4
để B lớn nhất suy ra 9/x-4 lớn nhất suy ra x-4=1 suy ra x=5
suy ra Bmax=10 khi x=5
c tao có:
B=1+9/x-4
để B nhỏ nhất suy ra 9/x-4 nhỏ nhất suy ra x-4=-1 suy ra x=3
suy ra 9/x-4=-9
suy ra Bmin=-8 khi x=3
Cho Bt \(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}\)\(-\frac{3x+1-x^2}{3x}\)
a,Tìm điều kiện xác định và rút gọn bt A
b,Tính giá trị bt A tại x=4
c,tìm x thuộc Z để a thuộc Z
a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2x+1-3x-1+x^2}{3x}\)
\(A=\frac{x^2-x}{3x}\)
\(A=\frac{x\left(x-1\right)}{3x}\)
\(A=\frac{x-1}{3}\)
b) Thay x = 4 ta có :
\(A=\frac{4-1}{3}=\frac{3}{3}=1\)
c) Để A thuộc Z thì \(x-1⋮3\)
\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)
\(\Rightarrow x\in\left\{1;4;7;...\right\}\)
Vậy.....
Cho Bt
a,Tìm điều kiện xác định và rút gọn bt A
b,Tính giá trị bt A tại x=4
c,tìm x thuộc Z để a thuộc Z
Cho phân số : C =\(\frac{3\left|x\right|+2}{4\left|x\right|-5}\)( x thuộc Z )
a) Tìm x thuộc Z để C đạt giá trị lớn nhất,tìm giá trị lớn nhất đó
b)Tìm x thuộc Z để C là số tự nhiên
a) tìm x sao cho giá trị của biểu thức \(\frac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\)
b) tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x--1)2
c) tìm x sao cho giá trị của biểu thức\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\)không lớn hơn giá trị của biểu thức \(\frac{x^2}{7}-\frac{2x-3}{5}\)
d) tìm x sao cho giá trị của biểu thức \(\frac{3x-2}{4}\)không lớn hơn giá trị của biểu thức \(\frac{3x+3}{6}\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
N = \(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) Rút gọn
b) Tìm x để N < 0
c) Tìm giá trị lớn nhất của N
d) Tìm x thuộc z để N thuộc z
e) Tính N tại x = \(7-4\sqrt{3}\)
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}\)
a)Tìm ĐKXĐ và rút gọn P
b)Tính giá trị của P khi x=1/2
c)Tìm giá trị của x để P thuộc Z
Mọi người giúp mk vs ạ!!!!!!!Thanks nhìu <3
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}\)
a,\(ĐKXĐ:x\ne0;x\ne3;x\ne1\)
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}=\left(\frac{9}{x\left(x-3\right)}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3\left(1-x\right)}\)
\(=\left(\frac{9+\left(x-2\right)\left(x-3\right)-x.x}{x\left(x-3\right)}\right).\frac{x}{3\left(1-x\right)}=\frac{9+x^2-5x+6-x^2}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}\)
\(=\frac{-5x+15}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=\frac{-5\left(x-3\right)}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=-\frac{5}{3\left(1-x\right)}\)
b, \(x=\frac{1}{2}\)
\(\Rightarrow P=-\frac{5}{3\left(1-\frac{1}{2}\right)}=-\frac{5}{3.\frac{1}{2}}=-5:\frac{3}{2}=-\frac{10}{3}\)
c, Để \(P\in z\)thì \(3\left(1-x\right)\inƯ\left(5\right)=\left(-5;-1;1;5\right)\)
\(3\left(1-x\right)=-5\Rightarrow1-x=-\frac{5}{3}\Rightarrow x=\frac{8}{3}\)
\(3\left(1-x\right)=-1\Rightarrow1-x=-\frac{1}{3}\Rightarrow x=\frac{4}{3}\)
\(3\left(1-x\right)=1\Rightarrow1-x=\frac{1}{3}\Rightarrow x=\frac{2}{3}\)
\(3\left(1-x\right)=5\Rightarrow1-x=\frac{5}{3}\Rightarrow x=-\frac{2}{3}\)