Chứng minh rằng nếu (a-b-c)+(-a+b-c)=-(a-b+c) thì a=b+c Nhanh nhé mình cần gấp
Bài 4: Chứng minh rằng: -(a-b-c)+(-a+b-c)-(-a+b+c)=-(a-b+c)
Bài 5: Cho M=(-a+b)-(b+c-a)+(c-a) Chứng minh rằng: Nếu a<0 thì M>0
Mình cần gấp ạ!
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
Chứng minh rằng nếu: \({a\over b} = {c\over d}\) thì \({a^2+b^2\over c^2+d^2} = {a*b\over c*d}\)
Nhanh cấp độ 999+ nhé mình cần gấp.
nếu a/b=c/d thì a^2+b^2/c^2+d^2=a*b/c*d
bài đúng nè
đc thì giùm mình
Cho a,b,c đôi một khác nhau thỏa mãn điều kiện :
a/(b-c) +b/(c-a) + c/(a-b) = 0
Chứng minh rằng : a/(b-c)2 +b/(c-a)2 + c/(a-b)2 = 0
giúp mình vs mình cần gấp ,ai làm nhanh và đúng mình k nhé
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
=> \(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)
Nhân cả hai vế với \(\frac{1}{b-c}\)
=> \(\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Tương tự: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ba}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Cộng vế với vế ta có:
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)
\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
Vậy ta có điều phải chứng minh.
cho a+b/a-b=c+d/c-d. chứng minh rằng: a/b=c/d
giúp nhé mình cần gấp
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow ac+bc-ad-db=ac-bc+ad-db\)
\(\Leftrightarrow ac-ac+bc+bc=ad+ad+db-db\)
\(\Leftrightarrow2bc=2ad\Leftrightarrow bc=ad\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(đfcm)
Vì a+b/a-b=c+d/c-d => a+b/c+d=a-b/c-d
Dựa vào tính chất của dãy tỉ số bằng nhau ta có: a+b/c+d=a-b/c-d=a+b+(a-b)/c+d+(c-d)=a+b+a-b/c+d+c-d=2a/2c=a/c (1)
a+b/c+d=a-b/c-d=a+b-(a-b)/c+d-(c-d)=a+b-a+b/c+d-c+d=2b/2d=b/d (2)
Từ (1),(2)suy ra: a/c=b/d
Chứng minh rằng nếu: a/b=b/c thì a mũ 2+b mũ 3/b mũ 2 + c mũ 2=a/c
Mik đang cần gấp mong m.n làm nhanh giúp mik nha
Ai trả lời nhanh nhất mik tick cho
Em kiểm tra lại đề bài nhé! Tham khảo link:
Câu hỏi của Phan Thúy Vy - Toán lớp 7 - Học toán với OnlineMath
Chứng minh rằng ; Nếu ab=c^2 (a,b,c thuộc N sao) và ƯCLN(a,b) = 1 thì a và b đều là các số chính phương. Ai làm nhanh nhất mình tick liền (2 tick nhé !!)
Mình cũng hỏi câu này
Giống nhau thật
1)Cho a/a+b=c/c+d Chứng minh rằng: a/b= c/d 2)cho a/b=c/d, chứng minh rằng a)3a+2c/3b+2d=-5a+3c/-5b+3d b)a^2/b^2=2c^2-ac/2d^2-b-d NHANH NHA! MÌNH ĐANG CẦN GẤP!!!
Nhanh lên nhé đang cần, ai nhanh mình tick cho.
Chứng minh rằng:
\(CMR:\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>1\)
Bổ sung đk a, b, c > 0 nhé.(Nếu không đk a,b,c > 0,cho a = -3; b = 2; c = 1 suy ra \(VT=-3\)->sai)
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Hình như toán lớp 6 thì phải ạ.
Cho \(\frac{a}{c}=\frac{c}{b}\)chứng minh rằng \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
Giúp mình với đang cần gấp lắm!
Ai nhanh nhất mình cho 1 tick đúng nhé!