Chứng minh (3.591 + 2) và (10.590 + 1) là hai số nguyên tố cùng nhau
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau
Cho UCLN(a,b)=1. Chứng minh rằng:
a) a và a+b là hai số nguyên tố cùng nhau
b) b và a+b là hai số nguyên tố cùng nhau
c) a và a-b là hai số nguyên tố cùng nhau
d) a.b va a2+b2là hai số nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
a và b là hai số nguyên tố cùng nhau. Chứng minh A=8a+3 và B=5b+2 là hai số nguyên tố cùng nhau
À , mk giải tiếp nké : UCLN ( 27;35 ) = 1
suy ra A & B là 2 số nguyên tố cùng nhau .
gọi d là UC của A và B
=>8a+3 chia hết cho d và 5b+2 chia hết cho d=>40a+15 chia hết cho d ( nhân A với 5) và 40b+16 ( nhân B với 8)
=>(40b+16)-(40a+15) chia hét cho d => 1chia hết cho d => d=1
vậy A và B ......
Bài 1: Chứng minh rằng: Hai số 2n + 5 và n + 2 là hai số nguyên tố cùng nhau.
Bài 2: Chứng minh rằng: Hai số 5n + 7 và 7n + 10 là hai số nguyên tố cùng nhau.
Bài 3: Tìm số nguyên tố p sao cho: p + 4 và p + 8 cũng là các số nguyên tố.
Bài 4: Cho p và p + 4 là số nguyên tố (p > 3). Chứng minh rằng: p + 8 là hợp số.
Bài 5: Tìm các số tự nhiên x và y sao cho: (2x – 1).(y + 3) = 12.
Bài 6: Tìm hai số nguyên tố có tổng bằng 309.
Bài 7: Cho hai số nguyên tố cùng nhau a và b. Chứng tỏ rằng: 11a + 2b và 18a + 5b hoặc là nguyên tố cùng nhau hoặc có một ước chung là 19.
Cho a và b là hai số nguyên tố cùng nhau . Chứng minh rằng a^2 và a+b cũng là hai số nguyên tố cùng nhau
cho m và n là 2 số nguyên tố cùng nhau. chứng minh m^2-n^2 và m.n là hai số nguyên tố cùng nhau