Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoang bao ha
Xem chi tiết
Lê Tài Bảo Châu
4 tháng 1 2020 lúc 8:27

\(P=\left|x-28\right|+\left|x-3\right|+\left|x-2020\right|\)

\(=\left(\left|x-3\right|+\left|x-2020\right|\right)+\left|x-28\right|\)

Đặt \(A=\left|x-3\right|+\left|x-2020\right|\)

Ta có: \(A=\left|x-3\right|+\left|x-2020\right|\)

                \(=\left|x-3\right|+\left|2020-x\right|\ge\left|x-3+2020-x\right|=2017\left(1\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left(x-3\right)\left(2020-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2020-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3< 0\\2020-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le2020\end{cases}}\)hoặc \(\hept{\begin{cases}x< 3\\x>2020\end{cases}\left(loai\right)}\)

\(\Leftrightarrow3\le x\le2020\)

Ta có: \(\left|x-28\right|\ge0;\forall x\left(2\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left|x-28\right|=0\)

                        \(\Leftrightarrow x=28\)

Từ (1) và (2)\(\Rightarrow A+\left|x-28\right|\ge2017\)

Hay \(P\ge2017\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}3\le x\le2020\\x=28\end{cases}}\Leftrightarrow x=28\)

Vậy \(P_{min}=2017\Leftrightarrow x=28\)

Khách vãng lai đã xóa
AnhNguyễnTHCS SôngLô
Xem chi tiết
Mai Nhật Lệ
17 tháng 1 2017 lúc 19:40

Để / 3 - x / + 4 nhỏ nhất <=> /3-x/ nhỏ nhất

Vì /3-x/ lớn hơn hoặc = 0, mọi x

=> /3-x/=0

=>x=3

Khi đó /3-x/ + 4 có gt là 4

Vật GTNN coe /3-x/ + 4 là 4 khi x = 3

Nghĩa Nam Lê
17 tháng 1 2017 lúc 19:38

 gt nho nhat cua bieu thuc : |3-x|+4 la : 4

HND_Boy Vip Excaliber
17 tháng 1 2017 lúc 19:41

Vì I 3 - x I luôn lớn hơn hoặc bằng 0

=> I 3 - x I + 4 luôn lớn hơn hoặc bằng 4

=> giá trị nhỏ nhất của I 3 - x I + 4 = 4

Khi đó I 3 - x I + 4 = 4

           I 3 - x I       = 4 - 4

           I 3 - x I        = 0

=> 3 - x = 0

          x = 3 - 0

          x = 3 

Vậy giá trị nhỏ nhất của I 3 - x I + 4 = 4 khi x = 3

Thi Oanh
Xem chi tiết
Pham Thanh Huy
Xem chi tiết
 Mashiro Shiina
11 tháng 8 2017 lúc 8:21

Áp dụng bất đẳng thức:

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|\)

\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge\left|3-1\right|\)

\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge2\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\Rightarrow x\ge-1\\y-2\ge0\Rightarrow y\ge2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\y-2< 0\Rightarrow y< 2\end{matrix}\right.\end{matrix}\right.\)

Vậy các cặp \(x;y\) thỏa mãn là:

\(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Phạm Thành Huy
Xem chi tiết
Đỗ Thị Hương Giang
Xem chi tiết
thu thu
24 tháng 12 2016 lúc 13:07

D bé nhất sẽ = 0

Nên biểu thức : " (8-x) /(x-3) " cũng có giá trị = 0

=> x=3 vì x-3 =0

Đ/s : 0

thu thu
24 tháng 12 2016 lúc 13:07

à nhầm đáp số :3

Đỗ Thị Hương Giang
25 tháng 12 2016 lúc 19:11

Pn oi hinh nhu mk giai ra gtnn la bang -11 va x=2

Nhóc còi
Xem chi tiết
soyeon_Tiểu bàng giải
27 tháng 8 2016 lúc 12:03

1) Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2) Ta có: Q = 9 - |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

Lê Minh Anh
27 tháng 8 2016 lúc 12:07

a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)

Đẳng thức xảy ra khi: |x| = 0  => x = 0

Vậy giá trị nhỏ nhất của p là 7 khi x = 0

b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)

Đẳng thức xảy ra khi: -|x| = 0  => x = 0

Vậy giá trị lớn nhất của Q là 9 khi x = 0

tran ngoc hoa
27 tháng 8 2016 lúc 12:15

1﴿ Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

k nha bị âm r

ngoc anh nguyen
Xem chi tiết
Đinh Đức Hùng
14 tháng 3 2017 lúc 13:56

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3

hoang bao ha
Xem chi tiết
Yêu nè
3 tháng 1 2020 lúc 14:45

Điều kiện \(x\ne\frac{-2}{3},x\in Z\)

M=\(\frac{2019x-2020}{3x+2}=\frac{673\left(3x+2\right)-3366}{3x+2}=673-\frac{3366}{3x+2}\)

Với \(\hept{\begin{cases}x\in Z\\3x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x>\frac{-2}{3}\end{cases}}\Rightarrow\frac{3366}{3x+2}>0\Rightarrow M>0\)

Với \(\hept{\begin{cases}x\in Z\\3x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x< \frac{-2}{3}\end{cases}}\)

\(\Rightarrow\)Phân số \(\frac{3366}{3x+2}\)nhỏ nhất\(\Leftrightarrow\)mẫu nguyên âm lớn nhất

                                                        \(\Leftrightarrow3x+2=-1\) 

                                                       \(\Leftrightarrow\)\(3x=-3\)

                                                      \(\Leftrightarrow x=-1\)(Thảo mãn điều kiện)

Với x=-1 thì M=4039

Vậy Min M=4039\(\Leftrightarrow x=-1\)

Khách vãng lai đã xóa