cho \(\frac{a}{c}=\frac{c}{b}\)cm rang
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
cho 3 so duong a,b,c thoa man a+b+c=3
cm rang \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}>=\frac{3}{2}\)
Cho a, b, c > 0
a) CM: \(\frac{a^2}{b+c}+\frac{b^2}{b+c}+\frac{c^2}{b+a}\ge\frac{a+b+c}{2}\)
b) CM: \(\frac{a}{a^2+b^2}+\frac{b}{b^2+c^2}+\frac{c}{a^2+c^2}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
a
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Tương tự với 2 cụm còn lại, cộng theo vế và thu gọn sẽ được đpcm.
b
\(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{a}{a^2+b^2}\le\frac{a}{2ab}=\frac{1}{2b}\)
Tương tự với 2 cụm còn lại, cộng theo vế là được đpcm.
mình chỉ làm đc câu a thôi nhưng dài lắm
bài đó áp dụng bất đẳng thức cô si
Cho\(\frac{a}{c}=\frac{c}{b}\)Chung minh rang \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Từ giả thiết ta suy ra ab=c2
Thay số vào ta có : \(\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(b+a\right)}=\frac{a}{b}\)
=> đcpcm
__cho_mình_nha_chúc_bạn_học _giỏi__
Cho a,b,c>0.Chung minh rang \(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\)
Ta có:
\(\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[\left(b+2c\right)+\left(c+2a\right)+\left(a+2b\right)\right]\)
\(\ge\left[\sqrt{\frac{a^2}{b+2c}.\left(b+2\right)}+\sqrt{\frac{b^2}{c+2a}.\left(c+2a\right)}+\sqrt{\frac{c^2}{a+2b}.\left(a+2b\right)}\right]^2\)
\(=\left(a+b+c\right)^2\)
\(\Rightarrow\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[3\left(a+b+c\right)\right]\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\left(đpcm\right)\)
cho a, b, c>0. CMR a\(\frac{a^3}{b}\ge a^2+ab-b^2\)
CM \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a, b, c là độ dài 3 cạnh của tam giác CM \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
1.
a)\(Cho\frac{a}{b}=\frac{b}{c}.CM:\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
b) Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=ay-\frac{bx}{c}\)
CM: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
mình chỉ làm được câu a thôi:
a/b=b/c=>b^2=ac thay vào:
a^2+b^2/b^2+c^2=a^2+ac/ac+c^2=a*(a+c)/c*(a+c)=a/c
cho \(\frac{a}{b}=\frac{c}{d}\)chung minh rang:
\(\frac{a}{a-b}=\frac{c}{c-d}\) \(\frac{a}{b}=\frac{a+c}{b+d}\) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\frac{a.b}{c.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) \(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\)\(\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)
+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
câu cuối lm tương tự
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) va\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2.\)
Chung minh rang a+b+c=abc
Ta có:\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Rightarrow2+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\Rightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=2\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
\(\Rightarrow\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)
\(\Rightarrowđpcm\)
Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{2}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow2=.2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
\(\Leftrightarrow\frac{a}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)
\(\Leftrightarrow a+b+c=abc\)
\(\RightarrowĐPCM\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
=> \(\frac{a+b+c}{abc}=1\)
=> a+b+c=abc
Cho a, b, c > 0. CM:
a) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
b) \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{a^2+c^2}{a+c}\le\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
c) \(\frac{a^2+b^2}{a^2-2ab+b^2}+\frac{b^2+c^2}{b^2-2bc+c^2}+\frac{c^2+a^2}{c^2-2ac+a^2}\ge\frac{5}{2}\)
(a, b, c đôi một khác nhau)