Tìm số tự nhiên n biết :
\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n=2^{n+34}\)
tìm số tự nhiên N thỏa mãn điều kiện
\(2.2^2+3.2^3+4.2^4+...+\left(\left(n-1\right)^2\right)^{n-1}+n.3^n=2^{n+34}\)
tìm số tự nhiên n thỏa mãn 2.2^2+ 3.2^3+4.2^4+...+ n.2^n = 2^(n+34)
1,Tìm số tự nhiên N biết : 2.2^2+3.2^3+4.2^4+....+n.2^n=2^n+10
A = 2.22 + 3.23 + 4.24 + ... + n.2n
2.A = 2.23 + 3.24 + 4.25 + ...+ n.2n+1
=> A - 2.A = 2.22 + (3.23 - 2.23) + (4.24 - 3.24) + ...+ (n - n + 1).2n - n.2n+1
=> A = 2.22 + 23 + 24 + ..+ 2n - n.2n+ 1 = 22 + (22 + 23 + ....+ 2n+ 1) - (n+1).2n+1
=> A = - 22 - (22 + 23 + ....+ 2n+ 1) + (n+1).2n+1
Tính B = 22 + 23 + ....+ 2n+ 1 => 2.B = 23 + ....+ 2n+ 1 + 2n+2 => 2B - B = 2n+2 - 22 => B = 2n+2 - 22
Vậy A = 22 - 2n+2 + 22 + (n+1).2n+1 = (n+1).2n+1 - 2n+ 2 = 2n+1.(n + 1 - 2) = (n-1).2n+1 = 2(n-1).2n
Theo bài cho A = 2(n-1).2n = 2n+10 => 2(n - 1) = 210 => n - 1 = 29 = 512 => n = 513
Vậy.............
n= 513, tui chỉ biết đáp án nhưng không biết cách làm
đặt A=2+2^2+2^3+...+2^n
2A=2^2+2^3+2^4+...+2^n+1 (1)
2A-A=2\(^{n+1}\)-2
A=2\(^{n+1}\)-2 (2)
từ (1)(2) =>2 + 2\(^2\)+2\(^3\)+...+2\(^n\)=2\(^{n+1}\)-2
2\(^2\)+2\(^3\)+...+2\(^n\)=2\(^{n-1}\)-2\(^2\)
..............................
2\(^n\)=2\(^{n-1}\)-2\(^n\)
cộng vế với vế ta có
2+2.2\(^2\)+3.2\(^3\)+...+n.2\(^n\)= n.2\(^{n+1}\)- (2+2\(^2\)+2\(^3\)+...+2\(^n\))
2+(2.2\(^2\)+3.2\(^3\)+...+n.2\(^n\)=n.2\(^{n+1}\)- A
2+2\(^{n+10}\)=n.2\(^{n+1}\)-2\(^{n+1}\)+2
2\(^{n+10}\)=2\(^{n+1}\).(n-1)
2\(^{n+1}\). 2\(^9\)=2\(^{n+1}\).(n-1)
=>n-1=2\(^9\)
=>n=2^9+1=513
vậy n=513
tìm số tự nhiên thỏa mãn điều kiện: 2.2^2+3.2^3+4.2^4+........+n.2^n= 2^n+34( n+34 là mũ của 2 nhé)
\(A=2.2^2+3.2^3+...+n.2^n\)
\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)
\(A=-2^2-\left(2^2+2^3+2^4+...+2^n\right)+n.2^{n+1}\)
\(A=-2^2-\left(2^{n+1}-2^2\right)+n.2^{n+1}\)
\(A=\left(n-1\right)2^{n+1}=\left(2n-2\right).2^n\)
Từ đây phương trình ban đầu tương đương với:
\(\left(2n-2\right).2^n=2^{n+34}\)
\(\Leftrightarrow\left(2n-2\right).2^n=2^n.2^{34}\)
\(\Leftrightarrow n-1=2^{33}\)
\(\Leftrightarrow n=2^{33}+1\)
Tìm số tự nhiên n thoả mãn
2.2^2+3.2^3+4.2^4+...+n.2^n=2^n+34
Tìm số tự nhiên n thỏa mãn điều kiện
2.2^2+3.2^3+4.2^4+.....+n.2^n = 2^n+34(n+34 là số mũ)
Mọi người ai biết giải giùm với ( trả lời nhanh nhanh nha)
Tìm n là số tự nhiên: 2.22+3.23+4.24+...+n.2n=2n+34
Bài 1:
a, Rút gọn \(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
b, Tìm số tự nhiên thỏa mãn điều kiện:
\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n=2^{n+34}\)
\(a,A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-..-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{100}-\left(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\right)\)
\(A=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-1+\frac{1}{100}\)
\(A=\frac{2}{100}-1\)
\(A=\frac{1}{50}-1\)
\(A=\frac{-49}{50}\)
b,\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n=2^{n+34}\) (1)
Đặt \(B=2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\)
\(\Rightarrow2B=2.\left(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\right)\)
\(=2.2^3+3.2^4+4.2^5+...+\left(n-1\right).2^n+n.2^{n+1}\)
\(2B-B=\left(2.2^3+3.2^4+4.2^5+..+\left(n-1\right).2^n+n.2^{n+1}\right)\)
\(=(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n)\)
\(B=-2^3-2^4-2^5-...-2^{n+1}-2.2^2\)
\(=-\left(2^3+2^4+2^5+...+2^n\right)+n.2^{n+1}-2^3\)
Đặt \(C=2^3+2^4+2^5+2^n\)
\(\Rightarrow2C=2.(2^3+2^4+2^5+...+2^n)\)
\(C=2^4+2^5+2^6+...+2^{n+1}\)
\(2C-C=\left(2^4+2^5+2^6+...+2^{n+1}\right)-\left(2^3+2^4+2^5+...+2^n\right)\)
\(C=2^{n+1}-2^3\)
Khi đó : \(B=-(2^{n+1}-2^3)+n.2^{n+1}-2^3\)
\(=-2^{n+1}+2^3+n.2^{n+1}-2^3\)
=\(=-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n-1}\)
Vậy từ (1) ta có:\(\left(n-1\right),2^{n+1}=2^{n+34}\)
\(2^{n+34}-\left(n-1\right).2^{n+1}=0\)
\(2^{n+1}.[2^{33}-\left(n-1\right)]=0\)
Do đó \(2^{33}-n+1=0\)( Vì \(2^{n+1}\ne0\)với mọi \(n\))
\(n=2^{33}+1\)
Vậy \(n=2^{33}+1\)
1,Tìm số tự nhiên N biết : 2.2^2 + 3.2^3 + 4.2^4+....+n.2^n = 2^m+n
2, Tìm số nguyên n biết :
1/4.2/6.3/8........30/62.31/64 = 2^n
3, Cho 4x/2^x+y = 8 và 9^x+y/3^5y=243 ( x,y là số tự nhiên). Tính x.y