1/2+1/6+1/12+1/20+...+1/x(x+1)=2011/4026
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1/6+1/12+1/20+1/30+...1/x nhân(x+1)=2011/4026
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
=> \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)
=> x + 1 = 2013 => x = 2012
Trả lời:
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x.\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{x.\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Leftrightarrow x+1=2013\)
\(\Leftrightarrow x=2012\)
Vậy \(x=2012\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{x+1}{2\left(x+1\right)}-\frac{2}{2\left(x+1\right)}=\frac{2011}{4026}\)
\(\Rightarrow\frac{x-1}{2\left(x+1\right)}=\frac{2011}{4026}\)
\(\Rightarrow\frac{4026\left(x-1\right)}{4026\cdot2\left(x+1\right)}=\frac{2011\cdot2\left(x+1\right)}{4026\cdot2\left(x+1\right)}\)
\(\Rightarrow4026x-4026=4022x+4022\)
\(\Rightarrow4026x-4022x=4022+4026\)
\(\Rightarrow4x=8048\)
\(\Rightarrow x=2012\)
Tìm x biết:
\(\frac{1}{6}\)+ \(\frac{1}{12}\)+ \(\frac{1}{20}\) +........+\(\frac{1}{x\cdot\left(x+1\right)}\)=\(\frac{2011}{4026}\)(cái chỗ x*(x+1);* là dấu nhân)
Ai giúp mk giải nhanh nhất mk tích cho.
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2012\)
Vậy x = 2012
Bài 1: 1) tìm x biết
A, 9/20 -8/15 . 5/12. B, 2/3÷4/5÷7/12. C, 7/9.1/3+7/9.2/3
2)tìm x biết
A, 2.(x-1)=4026. B, x.3,7+6,3.x=320. C, 0,25.3<3<1,02
Bài 1:
a) \(\dfrac{9}{20}-\dfrac{8}{15}\times\dfrac{5}{12}\)
\(=\dfrac{9}{20}-\dfrac{2}{9}\)
\(=\dfrac{41}{180}\)
b) \(\dfrac{2}{3}\div\dfrac{4}{5}\div\dfrac{7}{12}\)
\(=\dfrac{2}{3}\times\dfrac{5}{4}\times\dfrac{12}{7}\)
\(=\dfrac{5}{6}\times\dfrac{12}{7}\)
\(=\dfrac{10}{7}\)
c) \(\dfrac{7}{9}\times\dfrac{1}{3}+\dfrac{7}{9}\times\dfrac{2}{3}\)
\(=\dfrac{7}{9}\times\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\dfrac{7}{9}\times1\)
\(=\dfrac{7}{9}\)
Bài 2:
a) \(2\times\left(x-1\right)=4026\)
\(\left(x-1\right)=4026\div2\)
\(x-1=2013\)
\(x=2014\)
Vậy: \(x=2014\)
b) \(x\times3,7+6,3\times x=320\)
\(x\times\left(3,7+6,3\right)=320\)
\(x\times10=320\)
\(x=320\div10\)
\(x=32\)
Vậy: \(x=32\)
c) \(0,25\times3< 3< 1,02\)
\(\Leftrightarrow0,75< 3< 1,02\) ( S )
=> \(0,75< 1,02< 3\)
Giải phương trình sau
a) (x-2012)/1 + (x-2011)/2 + (x-2010)/3 +...+ (x-1)/2012 + x/2013
b) 1/(x^2+3x+2) + 1/(x^2+5x+6) + 1/(x^2+7x+12) + 1/(x^2+9x+20) = 1/8
Bài 1,1+2+3+...+x = 1176
Bài 3 , Tính nhanh :1/1*2+1/2*3 +1/3*4 + ...+ 1/98*99
Bài 4 , Tính nhanh :1/6 +1/12+1/20+ ...+1/110
Bài 5 , Tìm x : 1 /3 +1/6+1/10+...+1/x* (x+1:2)+2009/2011
Bài 3:
= 1- 1/2 + 1/2 -1/3 +...+ 1/98 -1/99
= 1- 1/99
= 98/99
Bài 4:
= 1/2*3 + 1/3*4 + 1/4*5 +...+ 1/10*11
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11
= 1/2 - 1/11= 9/22
Tìm X : \(1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=1\frac{2009}{2011}\)
=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2010}{2011}\)
=> \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2010}{2011}\)
=>\(1-\frac{1}{x+1}=\frac{2010}{2011}\)
=> \(\frac{1}{x+1}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
=> x + 1 = 2011
=> x = 2010
a) \(\dfrac{2}{1^2}.\dfrac{6}{2^2}.\dfrac{12}{3^2}.\dfrac{20}{4^2}.\dfrac{30}{5^2}.....\dfrac{110}{10^2}.x=-20\)
b) \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right).x+2013=\dfrac{2014}{1}+\dfrac{2015}{2}+...+\dfrac{4025}{2012}+\dfrac{4026}{2013}\)
c) \(\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right).x=\dfrac{2012}{51}+\dfrac{2012}{52}+...+\dfrac{2012}{99}+\dfrac{2012}{100}\)
Câu 1:So sánh M= 1/1.2+1/2.3+...+1/49.50 với 1
Câu 2: Tính. B=1+2+2^2+2^3+...+2^2008/1-2^2009
Câu 3.Tính. B=1/2+1/6+1/12+1/20+1/30+...+1/9900
Câu 4.Tính. 1/1.3+1/3.5+1/5.7+...+1/2009.2011
Câu 5. So sánh:
A=2011+2012/2012+2013
Và B=2011/2012+2011/2012+2012/2013
Câu 6: Tìm x biết :.(x/7+0,25)=-1/28
1/3+1/6+1/20+...+1/X x(X+1):2=2009/2011
tìm x
Bài toán này ta có thể giải như sau:
1/3+1/6+1/10+...+1/X x (X +1) :2 = 2009/2011
Nhân hai vế với 1/2
Ta được
1/6 + 1/12 + 1/20 +...+1/ X x (X +1) = 2009/4022
1/ 2x3 +1/3x4 +1/4x5 +...+1/X x (X +1) = = 2009/4022
1/2 - 1/3 +1/3 -1/4 + 1/4 - 1/5 +...1/X - 1/(X +1)= = 2009/4022
1/2 -1/ (X + 1) = 2009/4022
1/(X + 1) = 1/2 - 2009/4022
1/(X + 1) = 1/2011
X = 2010
nhae