Tìm m,n để \( {5m+5n \over 3m^2+2n^2}\)là số nguyên
Bài 1: Cho (d1) y= (m+2n)x+5m+3n+1
(d2) y= (3m+2n)x+2m+n+4
Tìm m, n để (d1) cắt (d2) tại A(1,5)
Bài 2: Tìm m để (d1) y= (m-2)x+m^2+5n+6 và (d2) y= -2x+6 cắt nhau tại 1 điểm trên trục tung
Tìm tất cả các cặp số (m, n) sao cho \(\frac{5m+5n}{3m^2+2n^2}\in Z\)
cho m>n hãy so sánh
a)2m-2 vs 2n-2
b)1-3m vs 1-3n
c)2m+3 vs 2n+1
d)3-5m vs 7-5n
a: m>n
=>2m>2n
=>2m-2>2n-2
b: m>n
=>-3m<-3n
=>-3m+1<-3n+1
c: m>n
=>2m>2n
=>2m+3>2n+3
mà 2n+3>2n+1
nên 2m+3>2n+1
d: m>n
=>-5m<-5n
=>-5m+3<-5n+3
mà -5n+3<-5n+7
nên -5m+3<-5n+7
Tìm số tự nhiên n để biểu thức C=2n+2/n+2 + 5n+17/n+2 - 3n/n+2 là số tự nhiên
Cho phân số P=n+4/2n-1 với n thuộc Z. tìm số nguyên n để giá trị của P là số nguyên tố
Cho phân số M=n+1/n-1.Với giá trị nào của n thì M là một số chẵn?Một số nguyên âm?
tìm số nguyên tố n để 2n+7 và 5n+2 là hai số nguyên tố cùng nhau
tìm n nguyên sao cho
a. n-3M+2
b. 3n-5M-2
c. 2n - 5M + 1
Tìm các số nguyên n để phân số 2n + 7 /5n +2 là phân số tối giản
Vì n là số nguyên nên 2n + 7 và 5n + 2 là số nguyên.
Gọi \(d\inƯC\left(2n+7,5n+2\right)\)
\(\Rightarrow2n+7⋮d\)và \(5n+2⋮d\)
\(\Rightarrow5\left(2n+7\right)-2\left(5n+2\right)⋮d\Rightarrow10n+35-10n-4⋮d\)
\(\Rightarrow31⋮d\Rightarrow d\in\left\{1;-1;31;-31\right\}\)
Ta có \(2n+7⋮31\Leftrightarrow2n+7+31⋮31\Leftrightarrow2n+38⋮31\Leftrightarrow2\left(n+19\right)⋮31\)
Vì \(\left(2,31\right)=1\Rightarrow n+19⋮31\Leftrightarrow n+19=31k\Leftrightarrow n=31k-19\)
+) Nếu \(n=31k-19\)
\(\Rightarrow2n+7=2\left(31k-19\right)+7=62k-38+7=62k-31\)
\(=31\left(2k-1\right)⋮31\)mà \(2n+7>2\Rightarrow2n+7\)là hợp số ( loại )
+) Nếu \(n\ne31k-19\)thì \(2n+7\)ko chia hết cho 31.
\(\RightarrowƯC\left(2n+7,5n+2\right)=\left\{1;-1\right\}\)
\(\Rightarrow\frac{2n+7}{5n+2}\)là PSTG .
Vậy n\\(n\ne31k-19\)thì \(\frac{2n+7}{5n+2}\)là PSTG \(\forall\)số nguyên n.
Bài 1 toán 9 tìm m và n để các hàm số sau bâc nhất
a, y=(3m-1)(2m+3)x2 - (4m+3)x-5m2+mn-1
b, y=(m2-2mn+2n2)x2-(3m+n)x-5(m-n)+3m2+1
c, y=(m2-5m+6)x2+(m2+mn+6n2)x+3
a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0
hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)
c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)
Trường hợp 1: m=2
\(\Leftrightarrow4+2n+6n^2< >0\)
Đặt \(6n^2+2n+4=0\)
\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)
Do đó: \(4+2n+6n^2< >0\forall n\)
Trường hợp 2: m=3
\(\Leftrightarrow9+3n+6n^2< >0\)
Đặt \(6n^2+3n+9=0\)
\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)
Do đó: \(6n^2+3n+9\ne0\forall n\)
Vậy: m=2 hoặc m=3