Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Quỳnh
Xem chi tiết
Nguyễn Xuân Toàn
28 tháng 11 2017 lúc 17:45

sai đề bài bn ak

Hoàng Thị Quỳnh
28 tháng 11 2017 lúc 17:54

Đầu bài không liên qan bạn ơi

shitbo
17 tháng 1 2019 lúc 14:18

\(Giải\)

\(\hept{\begin{cases}x^2+y^2-xy=19\\x+y+xy=-7\end{cases}}\Leftrightarrow x^2+y^2+x+y=12\)

\(\Leftrightarrow x^2+2xy+y^2+3x+3y=-2\Leftrightarrow\left(x+y+3\right)\left(x+y\right)=-2\)

\(\Leftrightarrow\left(x+y+3\right)\left(x+y\right)=-2.1\Leftrightarrow x+y=-2\)

\(\Rightarrow xy=-5\Rightarrow\left(x-y\right)^2=24\Rightarrow x-y=\sqrt{24}......\)

Lê Tài Bảo Châu
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 8:03

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

Khách vãng lai đã xóa
quỳnh hảo
Xem chi tiết
vũ tiền châu
1 tháng 1 2018 lúc 14:25

ta có hpt 

<=>\(\hept{\begin{cases}\left(x+y\right)^2-xy=37\\x+y+xy=19\end{cases}}\)

đặt \(x+y=a\)

ta có hpt 

<=>\(\hept{\begin{cases}a^2-xy=37\\a+xy=19\end{cases}}\)

Cộng hai vế của 2 pt, ta có 

\(a^2+a=56\Leftrightarrow\left(a-7\right)\left(a+8\right)=0\)

đến đây bạn tìm được mối quan hệ của x, y rồi và thay vào giải pt bậc 2 nhé 

^_^

Xem chi tiết
Nguyễn Văn Tuấn Anh
28 tháng 1 2020 lúc 20:14

Câu dễ làm trước !

b) \(\hept{\begin{cases}x^4+x^2y^2+y^4=481\\x^2+xy+y^2=37\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)-x^2y^2=481\\x^2+xy+y^2=37\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}\left(x^2-xy+y^2\right)=13\\x^2+xy+y^2=37\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=12\\x^2+y^2=25\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x^2+2xy+y^2\right)-xy=37\\\left(x^2-2xy+y^2\right)+xy=13\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=49\\\left(x-y\right)^2=1\end{cases}}\) (thay xy=12)

\(\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=-4\\y=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+y=7\\x-y=1\end{cases}}\\\hept{\begin{cases}x+y=-7\\x-y=-1\end{cases}}\end{cases}}\)

Khách vãng lai đã xóa

thanks you♥

Khách vãng lai đã xóa
hoàng thị huyền trang
Xem chi tiết
Phùng Minh Quân
11 tháng 10 2018 lúc 16:12

\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+y\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=0\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-xy+y^2=1-2xy\\\left(x+y\right)\left(1-2xy-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-xy+y^2=1-2xy\\-2xy\left(x+y\right)=0\end{cases}}}\)

+) Xét \(-2xy=0\)\(\Leftrightarrow\)\(xy=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

Mà \(x^2+y^2+xy=1\) nên x, y cùng dấu và \(x,y\ne0\)

+) Xét \(x+y=0\)\(\Leftrightarrow\)\(x=-y\)

Thay \(x=-y\) vào \(x^2+y^2+xy=1\) ta được : 

\(\left(-y\right)^2+y^2-y^2=1\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}y=1\\y=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}}\)

Vậy phương trình có tập nghiệm \(\left(x,y\right)=\left\{\left(1;-1\right),\left(-1;1\right)\right\}\)

Chúc bạn học tốt ~ 

PS : mới lớp 8 có j sai thì thui nhé :> 

nguyentranquang
Xem chi tiết
Tran Le Khanh Linh
5 tháng 4 2020 lúc 10:55

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)

Khách vãng lai đã xóa
Summer
Xem chi tiết
Sofia Nàng
Xem chi tiết

mình nghxi đề là thế này mới đúng ( sai thì mình ko biết )

\(\hept{\begin{cases}x^2+xy+y^2=1\\x-y-xy=3\end{cases}}\)

bài làm

Nhận xét rằng hệ trên zốn ko đối xứng

Đặt t=-y ta đc

\(\hept{\begin{cases}x^2-tx+t^2=1\\x+t+xt=-2\end{cases}}\)

đặt 

\(\hept{\begin{cases}x+t=S\\xt=P\end{cases}\left(ĐK;S^2-4P\ge0\right)}\)

hệ được chuyển zề dạng

\(\hept{\begin{cases}S^2-3P=1\\S+P=3\end{cases}=>S^2+3S-10=0=>\orbr{\begin{cases}S=-5\\S=2\end{cases}}}\)

\(=>\hept{\begin{cases}S=-5\\P=8\end{cases}\left(loại\right)hoặc\hept{\begin{cases}S=2\\P=1\end{cases}\left(nhận\right)\Leftrightarrow}\hept{\begin{cases}x+1=2\\xt=1\end{cases}}}\)

khi đó x,t là nghiệm của phương trình

\(z^2-2z+1=0=>z=1=>x=t=1=>x=1;y=-1\)

zậy có nghiemj duy nhất là (1;-1)

Khách vãng lai đã xóa
Nguyễn Minh Sang
Xem chi tiết
Trần Hữu Ngọc Minh
31 tháng 12 2018 lúc 22:13

trừ cho nhau là xong

Phương Thảo
1 tháng 2 2019 lúc 16:36

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

Darlingg🥝
17 tháng 6 2019 lúc 17:46

Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình