Có x\(^3\) + y\(^3\)= (x+y)\(^3\)- 3xy(x+y)
x\(^2\)+ xy + y\(^2\)= (x+y)\(^2\)-xy
Từ đây t đặt x+y=a; xy=b. Ta có hệ mới \(\hept{\begin{cases}a^3-3.a.b=152\\a^2-b=19\end{cases}}\)
Nhân 3a vào pt số 2 ta có\(\hept{\begin{cases}a^3-3ab=152\\3a^3-3ab=57a\end{cases}}\)Tư đây ta lấy pt thứ 2 trừ pt thứ nhất được pt 1 ẩn: 2a\(^3\)- 57a = -152 có thể giải tiếp