Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
The Last Legend
Xem chi tiết
Nguyễn Văn Anh
Xem chi tiết
gấukoala
Xem chi tiết
Trần Đức Thành
14 tháng 6 2021 lúc 17:31

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

Khách vãng lai đã xóa
Bùi Đạt Khôi
Xem chi tiết
Lã Nguyễn Gia Hy
4 tháng 9 2017 lúc 22:06

Ta có: \(2a+bc=\left(a+b+c\right)a+bc=a^2+ab+ac+bc\)

          \(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)

Tương tự, ta có \(2b+ca=\left(b+c\right)\left(b+a\right)\)và \(2c+ab=\left(c+a\right)\left(c+b\right)\)

Vậy \(\left(2a+bc\right)\left(2b+ca\right)\left(2c+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)là số chính phương.

Lê Hữu Minh
Xem chi tiết
Phạm Quốc Dũng
Xem chi tiết
Lương Đại
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
2 tháng 8 2023 lúc 10:29

Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)

\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))

\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\) (do \(b\ne d\))

 Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)

 

 

Tiên Phụng
Xem chi tiết