Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đình Việt
Xem chi tiết
Hạ Mạt
Xem chi tiết
Thanh Tùng DZ
15 tháng 2 2019 lúc 8:01

Bạn chứng minh cái này : a2n+1 + b2n+1 \(⋮\)a + b    ; an - bn \(⋮\)a - b 

Ta có : 20182019 + 20202019 = ( 20182019 + 1 ) + ( 20202019 - 1 ) 

20182019 + 1 \(⋮\)( 2018 + 1 ) = 2019 ;  20202019 - 1 \(⋮\)( 2010 - 1 ) = 2019

\(\Rightarrow\) 20182019 + 20202019 \(⋮\) 2019 

Nguyễn Việt Doanh
Xem chi tiết
Bóng Đêm Hoàng
Xem chi tiết
Nguyễn Việt Doanh
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 4 2020 lúc 1:23

a

Ta có:\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\Rightarrow2020^{2019}-1\equiv0\left(mod3\right)\)

Khi đó:\(\left(2020^{2019}+1\right)\cdot\left(2020^{2019}-1\right)\equiv0\left(mod3\right)\)

suy ra đpcm

b

\(n^5+96n=n\left(n^4+96\right)\)

Để \(n^5+96n\) là số nguyên tố thì:\(n^4+96=1\left(h\right)n=1\)

Do \(n^4+96>1\Rightarrow n=1\)

Thay vào ta thấy thỏa mãn

Vậy n=1

Khách vãng lai đã xóa
nguyễn trí tâm
10 tháng 4 2020 lúc 0:50

a, =2020^4038 -1

Vì  \(2020 \equiv 1 \pmod{3}\)

->\(2020^(4038) \equiv 1 \pmod{3}\)

->2020^4038 -1 chia hết cho 3 -> dpcm

Khách vãng lai đã xóa
to thanh
12 tháng 4 2020 lúc 16:26

(2020^2019+1)(2020^2019-1)=(2020^2019+1).(2020-1).(2020^2018 + 2020^2017+ 2020^2016+....+1) 

mà 2019 chia hết cho 3 nên (2020^2019+1).(2020-1).(2020^2018 + 2020^2017+ 2020^2016+....+1) chia hết cho 3

b) n^5 + 96n=n(n^4 + 96) luôn chia hết cho n và (n^4 + 96)

n(n^4 + 96) là số nguyên tố <=> n=1

Khách vãng lai đã xóa
Nguyễn đông an
Xem chi tiết
Mia Nguyen
Xem chi tiết
Tran Le Khanh Linh
14 tháng 4 2020 lúc 19:39

a) \(\left(2020^{2019}+1\right)\left(2020^{2019}-1\right)=\left(2020^{2019}\right)^2-1=2020^{4038}-1\)

Ta có: 2020 = 1 mod 3

\(\Rightarrow2020^{2019}\equiv1mod3\)

\(\Rightarrow2020^{4038}-1\equiv0mod3\)

=> đpcm

Khách vãng lai đã xóa
Đặng Anh Thư
Xem chi tiết
Tran Le Khanh Linh
11 tháng 5 2020 lúc 12:44

Ta có bài toán tổng quát sau:Chứng minh rằng tổng \(A=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}\)(n số hạng và n>1) không phải là số nguyên dương ta có:

\(1=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+...+\frac{n+1}{n^2+3}< \frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}< \frac{n+1}{n^2}+\frac{n+1}{n^2}\)\(+....+\frac{n+1}{n^2}=2\)

Do đó A không phải là số nguyên dương với n=2019 thì ta có bài toán đã cho

Khách vãng lai đã xóa
Nguyễn Hoàng Gia Linh
Xem chi tiết