Cho ΔABC vuông tại A, có M là trung điểm của cạnh BC. Kẻ MD⊥AB và ME⊥AC (M∈AB, E∈AC), AM cắt DE tại I. Tiếp tục vẽ điểm K đối xứng với M qua E, kẽ MH⊥AK (H∈AK). Chứng minh góc DHE bằng 90 độ.
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Lấy M trên cạnh BC, kẻ MD vuông góc với AB, ME vuông góc với AC. Lấy I đối xứng với D qua A, K đối xứng với E qua M. Chứng minh:
a) Tứ giác ADME là hình gì?
b) Gọi O là giao điểm của AM và DE. Chứng minh: I; O; K thẳng hàng
c) Góc DHE = 90 độ
d) Tìm vị trí của M trên BC để tứ giác AEKB là hình chữ nhật
a) ta có : tam giác ABC vuông tại A
=> BAC = 90 độ (1)
có : MD vuông góc AB
=> MDA = 90 độ (2)
Ta có : ME vuông góc AC
=> MEA = 90 độ (3)
Từ (1)(2)(3) => ADME là hình chữ nhật
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Từ M kẻ MD//AC và ME//AB (D thuộc AB, E thuộc AC).
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Gọi N là điểm đối xứng với M qua D. Chứng minh ANBM là hình thoi.
c) Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh DM = HE.
d) Chứng minh góc DHE = 90 độ.
cho tam giác ABC vuông tại A có AB bé hơn AC, gọi E là trung điểm của BC, kẻ EF vuông với AB, ED vuông với AC,O là giao điểm của FD và AE, K là điểm đối xứng với E qua D, kẻ ME vuông với AK tại M, kéo dài BD cắt KC tại I, cho AB=3cm,AC=4cm tính độ dài đoạn KI
Cho tam giác ABC vuông tại A với đường trung tuyển AM. Kẻ MD vuông góc với AB ( D thuộc AB), ME vuông góc với AC ( E thuộc AC ).
a. Chứng minh tứ giác ADME là hcn
b. Kẻ đường cao AH của tam giác ABC. Lấy điểm F đối xứng với A qua H và K đối xứng B qua H. Chứng minh tứ giác ABFK là hình thoi
c. Chứng minh AK vuông góc CF
d. Tính góc DHE
Cho tam giác ABC vuông tại A(AB < AC). Có M là trung điểm BC. MD vuông góc với AB, ME vuông góc với AC.
A) chứng ming tứ giác ADME là hình chữ nhật
B) chứng minh tứ giác BMED là hình bình hành
C) gọi F là điểm đối xứng của M qua E. Chứng minh AMCF là hình thoi
D) gọi N là điểm đối xứng của E qua M. Vẽ EK vuông góc với BC tại K. Chứng minh AK vuông góc với NK
Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi M là trung điểm BC . Vẽ
MD vuông góc AB tại D và ME vuông góc AC tại E
a) Chứng minh tứ giác ADME là hình chữ nhật .
b) Chứng minh tứ giác BMED là hình bình hành .
c) Gọi F là điểm đối xứng với M qua E . Chứng minh tứ giác AMCF là
hình thoi .
d) Gọi N là điểm đối xứng với E qua M . Vẽ EK vuông góc BC tại K .
Chứng minh AK vuông góc NK .
a) Xét tứ giác ADME có :
Góc A = 900 ( tam giác ABC vuông tại A )
Góc D = 900 ( MD vuông góc AB )
Góc E = 900 ( ME vuông góc AC )
Do đó tứ giác ADME là hình chữ nhật
b) Chứng minh đúng D, E là trung điểm của AB ; AC
Chứng minh đúng DE là đường trung bình của tam giác
ABC nên DE song song và \(DE=\frac{BC}{2}\)
Cho nên DE song song với BM và DE = BM
=> Tứ giác BDME là hình bình hành
c) Xét tứ giác AMCF có :
E là trung điểm MF ( vì M đối xứng với F qua E )
Mà E là trung điểm của AC ( cmt )
Nên tứ giác AMCF là hình bình hành
Ta có AC vuông góc MF ( vì ME vuông góc AC )
Do đó tứ giác AMCF là hình thoi
d) Chứng minh đúng tứ giác ABNE là hình chữ nhật
Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE
trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE
nên \(KO=\frac{BE}{2}\)
mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)
trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN
nên tam giác AKN vuông tại A
Vậy AK vuông góc KN
Cho tam giác vuông ABC vuông tại A điểm M thuộc BC từ M vẽ các đường thẳng vuông góc với cạnh AB ở D với cạnh AC tại E gọi I là điểm đối xứng với D qua A và K là điểm đối xứng của E qua M. Gọi AH là đường cao của tam giác ABC
a) chứng minh AM=DE
b) chứng minh ba đoạn thẳng IK, DE, AM đồng quy tại trung O của mỗi đoạn
c) tính số đo góc DHE
a) Xét tứ giác ADME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\)
=> ADME là hình chữ nhật
=> AM= DE
b) Gọi O là giao điểm của AM và DE => OA = OM = OD = OE (2)
Do ADME là HCN => DA = ME
=> 2DA = 2ME hay DA + AI = EM + MK (vì DA = AI; ME = MK)
=> DI = EK
Xét tứ giác DIEK có DI = EK (cmt)
DI// EK (vì CEMD là HCN)
=> DKEI là hình bình hành
Do O là trung điểm của DE => KI đi qua O
=> DE cắt IK tại O và OD = OE; OK = OI (1)
Từ (1) và (2) => DE; AM; IK đồng quy tại trung điểm O của mỗi đường
c) don't know, tự làm
Cho ΔABC vuông tại A từ trung điểm M của cạnh BC, kẻ MD và ME lần lượt vuông góc với AB và AC ( E ∈ AB, D ∈ AC). Lấy điểm F đối xứng với M qua Ea) Chứng minh tứ giác AMCF là hình thoib) Tìm điều kiện để ΔABC để tứ giác AMCE là hình vuôngc) Gọi I là trung điểm của EM. Chứng minh I là trung điểm của CD
a) Xét ΔAMF có
AE là đường cao ứng với cạnh MF(\(AE\perp MF\))
AE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)
Do đó: ΔAMF cân tại A(Định lí tam giác cân)
hay AM=AF(1)
Xét ΔCFM có
CE là đường cao ứng với cạnh MF(\(CE\perp MF\))
CE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)
Do đó: ΔCFM cân tại C(Định lí tam giác cân)
hay CM=CF(2)
Vì ΔABC vuông tại A(gt) có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(CM=BM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=CM=BM(3)
Từ (1), (2) và (3) suy ra AM=AF=CF=CM=BM
Xét tứ giác AMCF có AM=CM=CF=FA(cmt)
nên AMCF là hình thoi(Dấu hiệu nhận biết hình thoi)
b)
Sửa đề: Tìm điều kiện của ΔABC để tứ giác AMCF là hình vuông
Hình thoi AMCF trở thành hình vuông khi \(\widehat{AMC}=90^0\)
hay \(AM\perp BC\)
Xét ΔABC có
AM là đường cao ứng với cạnh BC(\(AM\perp BC\))
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
Do đó: ΔABC cân tại A(Định lí tam giác cân)
hay AB=AC
Vậy: Khi ΔABC có thêm điều kiện AB=AC thì AMCF trở thành hình vuông
c)
Ta có: MD\(\perp\)AB(gt)
AC\(\perp\)AB(ΔABC vuông tại A)
Do đó: MD//AC(Định lí 1 từ vuông góc tới song song)
Xét ΔABC có
M là trung điểm của BC(gt)
MD//AC(cmt)
Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
D là trung điểm của AB(cmt)
Do đó: MD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
nên \(MD=\dfrac{AC}{2}\)(Định lí 2 đường trung bình của tam giác)(1)
Ta có: \(ME\perp AC\)(gt)
\(AB\perp AC\)(ΔABC vuông tại A)
Do đó: ME//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔABC có
M là trung điểm của BC(gt)
ME//AB(cmt)
Do đó: E là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
nên \(CE=\dfrac{AC}{2}\)(2)
Từ (1) và (2) suy ra MD=CE
Xét tứ giác CMDE có
MD//CE(MD//AC)
MD=CE(cmt)
Do đó: CMDE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
nên Hai đường chéo CD và EM cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà I là trung điểm của EM(gt)
nên I là trung điểm của CD(đpcm)
Cho tam giác ABC vuông tại A. Điểm M thuộc cạnh BC. Từ M vẽ các đường thẳng vuông góc với cạnh AB ở D và với cạnh AC ở E.
a) Chứng minh AM = DE
b) Gọi I là điểm đối xứng của D qua A và K là điểm đối xứng của E qua M. Chứng minh rằng các đoạn thẳng IK, DE, AM đồng quy tại trung điểm O của mỗi đoạn
c) Gọi AH là đường cao của tam giác ABC (H thuộc BC). Tính số đo góc DHE
d) Tìm vị trí của điểm M trên cạnh BC để tứ giác DIEK là hình thoi