Phan tich da thuc thanh nhan tu
xy(x+y)+yz(y+z)+zx(x+z)+2xyz
phan tich da thuc thanh nhan tu
1+x+y+z+xy+yz+zx+xyz
phan tich da thuc thanh nhan tu :xy(x-y)-xz(x+z)+yz(2x+z-y)
\(\left(x+y+z\right)\left(xy+yz+xz\right)-xyz=xy\left(x+y+z\right)-xyz+\left(yz+xz\right)\left(x+y+z\right)\)
\(=xy\left(x+y+z-z\right)+z\left(x+y\right)\left(x+y+z\right)\)
\(=xy\left(x+y\right)+z\left(x+y\right)\left(x+y+z\right)\)
\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)
\(=\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
phan tich da thuc sau thanh nhan tu
xy(x+y) + yz(y+z) + xz(x+z) + 2xyz
tinh gia tri bieu thuc
3(x-3)(x+7) + (x-4)2 + 48 tai x = 0,5
chung minh rang
x2 - 6x + 10 >0 voi moi x
4x - x2 - 5 <0 voi moi x
1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= x2y+xy2+y2z+yz2+x2z+xz2+2xyz
=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)
=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)
=(xy+xz+yz+z2).(x+y)
=(x(y+z)+z(y+z)).(x+y)
=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)
2. 3(x-3)(x-7)+(x-4)2+48
=3(x2+4x-21)+x2-8x+16+48
=4x2-4x+1 = (2x-1)2
Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0
3, x2-6x+10
= x2-2.3.x+9+1
=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)2 >=0 với mọi x)
=> x26x+10 >0 với mọi x
4x-x2-5
=-(x2-4x+5)
=- (x2-2.2x+4+1)
= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)
vậy, 4x-x2-5<0 với mọi x
Ta có : x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x - 3)2 + 1
Mà (x - 3)2 \(\ge0\forall x\)
Nên : (x - 3)2 + 1 \(\ge1\forall x\)
=> (x - 3)2 + 1 \(>0\)(đpcm)
phan tich da thuc thanh nhan tu (x-y).z^3 +(y-z).x^3 +(z-y).y^3
Phân tich da thuc thanh nhan tu
a)\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(=-[xy(x+y)-yz(y+z)-zx(z-x)]\)
\(=-(y.[x(x+y)-z(y+z)]-zx(z-x))\)
\(=-[y.(x^2+xy-zy-z^2)-zx(z-x)]\)
\(=-[y.(x^2-z^2+xy-zy)-zx(z-x)]\)
\(=-(y.[(x+z)(x-z)+y.(x-z)]-zx(z-x))\)
\(=-[y.(x-z)(x+z+y)+zx(x-z)]\)
\(=[(x-z)[y(x+z+y)+zx]]\)
\(=-(x-z)(yx+yz+y2+zx)\)
\(=-(x-z)(yx+zx+yz+y2)\)
\(=-[(x-z)[x.(y+z)+y.(y+z)]]\)
\(=-(x-z)(y+z)(x+y)\)
(x+y+z)^3 - (x+y-z)^3 - (y+z-x)^3 - (z+x-y)^3
Phan tich da thuc thanh nhan tu
Goi da thuc tren la A
Thay a=b -> A= 0 -> A chua nghiem la a-b
Tuong tu b=c-> A = 0 - > A chua nghiem la b -c
Tuong tu c =a - > A = 0 -> A chua nghiem la c-a
=> A = k(a - b)(b - c)(c - a)
Vì A có bậc 3 mà (a - b)(b - c)(c - a) cũng có bậc 3 -> k là 1 số
Thay a = 3, b= 2, c= 1
=> A= -6=k.1.1..-2
=> k = 3
=> A = 3(a - b)(b - c)(c - a)
Đây gọi là phương pháp giá trị riêng bạn nha!
x^5 + x + 1
= x^5 - x^2 + (x^2 + x + 1)
= x^2(x^3 - 1) + ( x^2 + x + 1)
= x^2( x - 1)(x^2 + x + 1) + ( x^2 + x + 1)
= (x^3 - x^2 + 1)(x^ 2 + x + 1)
Phan tich da thuc thanh nhan tu: (x+y+z)^5 - x^5 - y^5 - z^5
phan tich da thuc sau thanh nhan tu
2x(y-z)+(z-y)(x+t)