Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng Thiên Bảo
Xem chi tiết
alibaba nguyễn
19 tháng 11 2016 lúc 18:23

2/ \(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)

Ta thấy rằng mẫu là số dương nên để P lớn nhất thì mẫu bé nhất hay x = 0

\(P=\frac{2}{3}\)

alibaba nguyễn
19 tháng 11 2016 lúc 18:16

1/ Đặt \(\sqrt{x}=a\:voi\:a\ge0\) thì pt thành

\(\frac{2-5a}{a+3}=\frac{5-8a}{3a+1}\)

\(\Leftrightarrow7a^2-20a+13=0\)

<=> (a - 1)(7a - 13) = 0

alibaba nguyễn
19 tháng 11 2016 lúc 18:17

Giải tiếp câu 1/

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{13}{7}\end{cases}}\)

Nguyễn Thảo Nguyên
Xem chi tiết
Bimbim
11 tháng 8 2020 lúc 15:42

Kết quả là 25

Khách vãng lai đã xóa
Nguyễn Phúc Thiên
Xem chi tiết
Lương Thu Hà
Xem chi tiết
Nguyễn Ngô Minh Trí
30 tháng 10 2017 lúc 20:20

Xin lỗi online math em lỡ spam rồi đừng trừ diem a

Nguyễn Anh Khoa
Xem chi tiết
quyen nguyen dinh
Xem chi tiết
Trần Hoàng Thiên Bảo
Xem chi tiết
alibaba nguyễn
19 tháng 11 2016 lúc 10:57

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

alibaba nguyễn
19 tháng 11 2016 lúc 11:02

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé

alibaba nguyễn
19 tháng 11 2016 lúc 11:08

3/ Điều kiện xác định bạn tự làm nhé

\(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)

\(\Leftrightarrow8x+67\sqrt{x}+1=0\)

Tới đây thì bạn xem như phương trình bậc 2 là giải tiếp được. Nhớ đối chiếu điều kiện để loại nghiệm

Linh Nguyen
Xem chi tiết
loan leo
Xem chi tiết
nub
11 tháng 3 2020 lúc 13:30

\(\frac{1}{2}\left(\frac{1}{\sqrt{2010}}+\frac{1}{\sqrt{2009}}\right)-A=\frac{1}{2}\left[\frac{1}{\sqrt{2010}\left(x+2\right)}\left(\sqrt{x-2008}-\sqrt{2010}\right)^2+\frac{1}{\sqrt{2009}x}\left(\sqrt{x-2009}-\sqrt{2009}\right)^2\right]\ge0\)

Khách vãng lai đã xóa