giải phương trình nghiệm nguyên 4xy+6x-y=182
Giải phương trình nghiệm nguyên: x2+3y2+4xy-2x-6y=5
\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)
\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)
\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)
Bảng giá trị:
x+y-2 | -5 | -1 | 1 | 5 |
x+3y | -1 | -5 | 5 | 1 |
x | -4 | 4 | 2 | 10 |
y | 1 | -3 | 1 | -3 |
Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)
Giải phương trình nghiệm nguyên dương:2x+3y+4xy=9
<=> 2x(4y+2)=2(9-3y)
=> 4x=\(-\frac{6y-18}{2y+1}=-\frac{6y+3-21}{2y+1}=-3+\frac{21}{2y+1}\)
Để x nguyên thì 4x nguyên, hay 21 phải chia hết cho 2y+1 => 2y+1={-21; -7; -3; -1; 1; 3; 7; 21}
Do x nguyên dương nên ta chỉ chọn được kết quả: 2y+1={3; 7} => y={1; 3}
+/ y=1=> x=1; y=3 => x=0
Các cặp x, y thỏa mãn là: {1; 1}; {0; 3}
Giải phương trình nghiệm nguyên: \(x^2-4xy+5y^2-16=0\)
\(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Ta xét các TH:
TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)
giải phương trình nghiệm nguyên x^3 + 4x^2 + 6x + 4 = y^2
x^4 + 4x^3+ 6x^2+ 4x = y^2
Hướng dẫn: Ta có: x^4 + 4x^3+ 6x^2+ 4x = y^2
⇔ x^4 +4x^3+6x^2+4x +1- y^2=1
⇔ (x+1)^4 – y^2 = 1
⇔ [(x+1)^2 –y] [(x+1)^2+y]= 1
\(\Leftrightarrow\) \(\hept{\begin{cases}\left(x+1\right)^2-y=1\\\left(x+1\right)^2+y=1\end{cases}}\) hoặc \(\hept{\begin{cases}\left(x+1\right)^2-y=-1\\\left(x+1\right)^2+y=-1\end{cases}}\)
\(\orbr{\begin{cases}1-y=1+y\\-1-y=-1+y\end{cases}}\)
⇒ y = 0 ⇒ (x+1)^2 = 1
⇔ x+1 = ±1 ⇒ x = 0 hoặc x = -2
Vậy ( x, y ) = ( 0, 0 ); ( – 2, 0 )
Chúc bạn hk tốt!!!
Giải phương trình nghiệm nguyên không âm: \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25
↔x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0
↔(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0
↔(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0→[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4
Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)
ta có bảng:
x+1 1 5 -1 -5
y+1 -5 -1 5 1
x 0 4 -2 -6
y -6 -2 4 0
→(x,y)ϵ{(0;−6),(4;−2)...}
\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)
\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)
\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)
\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)
nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\)
( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )
ta lập bảng :
\(x+1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | \(0\) | \(4\) | \(-2\) | \(-6\) |
\(y\) | \(-6\) | \(-2\) | \(4\) | \(0\) |
\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)
Giải phương trình nghiệm nguyên x^2y+4xy+4y = 162x+162y
giải phương trình nghiệm nguyên
x^2-6x+y^2+10y=24
\(x^2-6x+y^2+10y=24\)
\(\Leftrightarrow x^2-6x+9+y^2+10x+25=58\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)
\(\Leftrightarrow\left(x-3\right)^2\le58\Leftrightarrow\left(x-3\right)^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
Dễ nhận thấy chỉ có tổng của 49 và: 9; 9 và 49 thỏa mãn (vì các số trên là số chính phương
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}\left(x-3\right)^2=49\Leftrightarrow x-3=7\Leftrightarrow x=10\\\left(y+5\right)^2=9\Leftrightarrow y+5=3\Leftrightarrow y=-2\end{cases}}\\\end{cases}}\)<=> (x-3)^2+(y+5)^2=49+9=9+49
+) (x-3)^2+(y+5)^2=49+9
=> x-3=7=>x=10 và: y+5=3=>y=-2
+) (x-3)^2+(y+5)^2=9+49
=> (x-3)=3=>x=6 và y+5=7=>y=2
Vậy có 2 cặp (x,y)={(6;2);(10;-2)}
thỏa mãn điều kiện
giải phương trình nghiệm nguyên\(x^2-4xy+5y^2-16=0\)
Ta có : \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)
Mà \(\left(x-2y\right)^2\ge0\forall x:y\)
\(\left(y-4\right)^2\ge0\forall y\)
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(8;4\right)\)
Giải phương trình nghiệm nguyên:
\(x^4+4x^3+6x^2+4x=y^2\)