Giải hệ phương trình \(\hept{\begin{cases}2x^2-3x=y^2+4\\2y^2-3y=x^2+4\end{cases}}\)
giải hệ phương trình : a)\(\hept{\begin{cases}x+3y=4\\2x+5y=7\end{cases}}\)\(\hept{\begin{cases}3x+2y=1\\3x+y=2\end{cases}}\)
a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)
Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)
Lấy (3) - (2) ta được \(y=1\)
Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1
Vậy x = y = 1
b) \(\hept{\begin{cases}3x+2y=1\left(1\right)\\3x+y=2\left(2\right)\end{cases}}\)
Lấy (1) - (2) suy ra y = -1
Từ đó suy ra \(x=\frac{1+2}{3}=1\)
Vậy y = -1 và x = 1
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}2x+y=5\\3x+5y=4\end{cases}}\)
2) \(\hept{\begin{cases}x-2y=1\\3x+4y=3\end{cases}}\)
3) \(\hept{\begin{cases}x-y=3\\4x+3y=5\end{cases}}\)
4) \(\hept{\begin{cases}4x+3y=2\\2x-2y=1\end{cases}}\)
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}x+y=5\\x+3y=1\end{cases}}\)
2) \(\hept{\begin{cases}3x-y=2\\x+y=6\end{cases}}\)
3) \(\hept{\begin{cases}x+2y=5\\3x-2y=3\end{cases}}\)
4) \(\hept{\begin{cases}2x-y=5\\2x+3y=1\end{cases}}\)
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
giải hệ phương trình
a,\(\hept{\begin{cases}2x^2+xy=3x\\2y^2+xy=3y\end{cases}}\)b,\(\hept{\begin{cases}y^2=x^3-3x^2+2x\\x^2=y^3-3y^2+2y\end{cases}}\)
c,\(\hept{\begin{cases}3x+y=\frac{1}{x^2}\\3y+x=\frac{1}{y^2}\end{cases}}\)
d,\(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Dùng cái đầu đi ạ
Giải hệ phương trình: \(\hept{\begin{cases}x^2=3x+2y\\y^2=3y+2x\end{cases}}\)
\(\hept{\begin{cases}x^2=3x+2y\\y^2=3y+2x\end{cases}}\)
\(\Rightarrow x^2-y^2=3\left(x-y\right)-2\left(x-y\right)\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)=\left(x-y\right)\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)-\left(x-y\right)=0\)
\(\Rightarrow\left(x+y-1\right)\left(x-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\x-y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=1\\x=y\end{cases}}\)
Giải hệ phương trình\(\hept{\begin{cases}2x^2-3x=y^2-2\\2y^2-3y=x^2-2\end{cases}}\)
Lấy (1) trừ (2) ta được
\(2\left(x^2-y^2\right)-3\left(x-y\right)=y^2-x^2\)
\(\left(x-y\right)\left(2x+2y-3+x+y\right)=0\)
\(\left(x-y\right)\left(x+y-1\right)=0\)(chia cả 2 vế cho 3)
\(\Rightarrow\orbr{\begin{cases}x-y=0\\x+y=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=y\\x=1-y\end{cases}}\)
Vậy................
giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).
Giải hệ phương trình: \(\hept{\begin{cases}x^2=2y+3x-6\\y^2=2x+3y-6\end{cases}}\)
Cộng theo từng vế của hai phương trình ta được:
\(x^2-y^2=\left(2y+3x-6\right)-\left(2x+3y-6\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x-y\)
\(\Leftrightarrow\left(x+y-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-y\end{cases}}\)
TH1: \(x=y\)thay vào phương trình thứ nhất ta được: \(x^2=2x+3x-6\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=3\\y=2\end{cases}}\)
TH2: \(x=1-y\)thay vào phương trình thứ nhất ta được:
\(\left(1-y\right)^2=2y+3\left(1-y\right)-6\)
\(\Leftrightarrow y^2-2y+1=-y-3\)
\(\Leftrightarrow y^2-y+4=0\)(vô nghiệm)
Vậy hệ phương trình có nghiệm \(\left(x,y\right)\in\left\{\left(3;3\right),\left(2;2\right)\right\}\)
Trừ theo từng vế, nhầm.
\(\Leftrightarrow\hept{\begin{cases}x^2=2y+3x-6\\x^2-y^2=x-y\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=2y+3x-6\\\left(x-y\right)\left(x+y-1\right)=0\end{cases}}}\)
TH1: \(\hept{\begin{cases}x^2=2y+3x-6\\x=y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-5x+6=0\\x=y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\orbr{\begin{cases}x=2\\x=3\Leftrightarrow\left(x;y\right)=\left(2;2\right),\left(3;3\right)\end{cases}}\\x=y\end{cases}}\)x=2 hoặc x=3 => (x;y)=(2;2),(3;3) và x=y (viết bằng ngoặc nhá)
TH2: \(\hept{\begin{cases}x^2=2y+3x-6\\x+y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=2y+3x-6\\y=1-x\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-x+4=0\left(vn\right)\\y=1-x\end{cases}}}}\)
Vậy hệ pt có nghiệm (x;y)=(2;2),(3;3)