Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi duy cường
Xem chi tiết
Phùng Vinh Hoàng
26 tháng 5 2019 lúc 20:07

a,
x=1; y=1

b,

x=1; y=-1

Kiệt Nguyễn
26 tháng 5 2019 lúc 20:10

a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)

Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)

Lấy (3) - (2) ta được \(y=1\)

Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1

Vậy x = y = 1

Kiệt Nguyễn
26 tháng 5 2019 lúc 20:11

b) \(\hept{\begin{cases}3x+2y=1\left(1\right)\\3x+y=2\left(2\right)\end{cases}}\)

Lấy (1) - (2) suy ra y = -1

Từ đó suy ra \(x=\frac{1+2}{3}=1\)

Vậy y = -1 và x = 1

my name is crazy
Xem chi tiết
hunny
20 tháng 7 2019 lúc 10:26

mấy bài này dễ mà bạn

my name is crazy
Xem chi tiết
_ℛℴ✘_
18 tháng 7 2018 lúc 19:27

1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)

\(2y=-4\Rightarrow y=-2\)

                    \(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )

2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>

\(x+3x-2=6\)

\(4x=8\Rightarrow x=2\)

               \(\Rightarrow y=6-2=4\)

3)  \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2

\(3x-5+x=3\)

\(4x=8\Rightarrow x=2\)

                \(2y=3\Rightarrow y=\frac{3}{2}\)

4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )

\(5+y+3y=1\)

\(4y=-4\Rightarrow y=-1\)

                   \(\Rightarrow2x=4\Rightarrow x=2\)

mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...

Nguyễn Minh Sang
Xem chi tiết
Trần Hữu Ngọc Minh
31 tháng 12 2018 lúc 22:13

trừ cho nhau là xong

Phương Thảo
1 tháng 2 2019 lúc 16:36

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

Darlingg🥝
17 tháng 6 2019 lúc 17:46

Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình 

Nguyễn Thị Hòa
Xem chi tiết
Nguyễn Khánh Hiển Long
9 tháng 7 2021 lúc 17:09

Dùng cái đầu đi ạ

Khách vãng lai đã xóa
Nguyễn Công Minh Hoàng
Xem chi tiết
Kiệt Nguyễn
29 tháng 12 2019 lúc 10:59

\(\hept{\begin{cases}x^2=3x+2y\\y^2=3y+2x\end{cases}}\)

\(\Rightarrow x^2-y^2=3\left(x-y\right)-2\left(x-y\right)\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)=\left(x-y\right)\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)-\left(x-y\right)=0\)

\(\Rightarrow\left(x+y-1\right)\left(x-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\x-y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=1\\x=y\end{cases}}\)

Khách vãng lai đã xóa
Peter Qilly
Xem chi tiết

Lấy (1) trừ (2) ta được

\(2\left(x^2-y^2\right)-3\left(x-y\right)=y^2-x^2\)

\(\left(x-y\right)\left(2x+2y-3+x+y\right)=0\)

\(\left(x-y\right)\left(x+y-1\right)=0\)(chia cả 2 vế cho 3)

\(\Rightarrow\orbr{\begin{cases}x-y=0\\x+y=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=y\\x=1-y\end{cases}}\)

Vậy................

Trang-g Seola-a
Xem chi tiết
Odette Auspicious Charm
Xem chi tiết
KCLH Kedokatoji
15 tháng 10 2020 lúc 21:50

Cộng theo từng vế của hai phương trình ta được: 

 \(x^2-y^2=\left(2y+3x-6\right)-\left(2x+3y-6\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x-y\)

\(\Leftrightarrow\left(x+y-1\right)\left(x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-y\end{cases}}\)

TH1: \(x=y\)thay vào phương trình thứ nhất ta được: \(x^2=2x+3x-6\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=3\\y=2\end{cases}}\)

TH2: \(x=1-y\)thay vào phương trình thứ nhất ta được:

\(\left(1-y\right)^2=2y+3\left(1-y\right)-6\)

\(\Leftrightarrow y^2-2y+1=-y-3\)

\(\Leftrightarrow y^2-y+4=0\)(vô nghiệm)

Vậy hệ phương trình có nghiệm \(\left(x,y\right)\in\left\{\left(3;3\right),\left(2;2\right)\right\}\)

Khách vãng lai đã xóa
KCLH Kedokatoji
15 tháng 10 2020 lúc 21:53

Trừ theo từng vế, nhầm.

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
15 tháng 10 2020 lúc 21:54

\(\Leftrightarrow\hept{\begin{cases}x^2=2y+3x-6\\x^2-y^2=x-y\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=2y+3x-6\\\left(x-y\right)\left(x+y-1\right)=0\end{cases}}}\)

TH1: \(\hept{\begin{cases}x^2=2y+3x-6\\x=y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-5x+6=0\\x=y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\orbr{\begin{cases}x=2\\x=3\Leftrightarrow\left(x;y\right)=\left(2;2\right),\left(3;3\right)\end{cases}}\\x=y\end{cases}}\)x=2 hoặc x=3 => (x;y)=(2;2),(3;3) và x=y (viết bằng ngoặc nhá)

TH2: \(\hept{\begin{cases}x^2=2y+3x-6\\x+y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=2y+3x-6\\y=1-x\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-x+4=0\left(vn\right)\\y=1-x\end{cases}}}}\)

Vậy hệ pt có nghiệm (x;y)=(2;2),(3;3)

Khách vãng lai đã xóa