Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bạch Tố Như
Xem chi tiết
Nguyễn Ngọc Linh
8 tháng 3 2020 lúc 14:57

Hỏi đáp Toán

a)

ta có G là trọng tâm của tam giác ABC.

\(\hept{\begin{cases}\Rightarrow BH=GH=GD\\\Rightarrow EG=GK=KC\end{cases}}\)

hay G là trung điểm của EK và HD.

tứ giác EDKH có 2 đường chéo cắt nhau tại trung điểm mỗi đường

do đó tứ giác EDKH là hình bình hành.

b) để hình bình hành EDKH là hình chữ nhật thì EK=HD

⇒BD=EC⇒­ΔABC­cân

vậy để hình bình hành EDKH là hình chữ nhật thì tam giác ABC cân

c) vẽ đường cao AI vuông góc với BC.

khi đó AI cũng là đường trung tuyến.

\(\Rightarrow AG=\frac{2}{3}AI\)

ta có :\(\hept{\begin{cases}BE=AE\\AD=DC\end{cases}}\) nên ED là đường trung bình của tam giác ABC.

\(\hept{\begin{cases}ED//BC\\2ED=BC\end{cases}}\)

vì ED//BC và AI⊥BC nên ED⊥AI

đồng thời EH⊥ED nên EH//AI.

ta có: \(\hept{\begin{cases}EH//AI\\BE=EA\end{cases}}\)\(\Rightarrow AH=\frac{AG}{2}\)

hay \(EH=\frac{\frac{2}{3}AI}{2}=\frac{1}{3}AI\Leftrightarrow3EH=AI\)

\(S\Delta ABC=\frac{AI.BC}{2}=\frac{3EH.2ED}{2}=3EH.ED\)=\(3S_{EDHK}\)

vậy\(\frac{S_{EDHK}}{S_{\Delta ABC}}=\frac{1}{3}\)

CHÚC BẠN HỌC TỐT

Khách vãng lai đã xóa
Thúy Lê thanh
Xem chi tiết
Trương thành phát
Xem chi tiết
Long
21 tháng 12 2016 lúc 21:44

A) ta có : ED là đường trung bình của tam giác ABC vậy ED song song với BC và ED=1/2BC*

              HK là đường trung bình của tam giác BGC vậy HK song song với BC và HK=1/2BC**

Từ *và ** suy ra : ED=HK=1/2BC; ED song song với HK

         vậy suy ra tứ giác EDHK là HBH

B) Nếu cần điều kiện từ tam giác ABC để tứ giác EDHK là HCN thì tam giác ABC cân tại A

 Vì khi tam giác ABC cân tại A thì ta sẽ có :  EB=DC

 xét tam giác EBC và tam giác DCB có :

EB=DC ( theo CM trên )

 BC cạnh chung

góc EBC = góc DCB ( vì ta đưa ra giả thiết tam giác ABC cân tại A)

vậy tam giác EBC= tam giác DCB

 suy ra : EC=DB 

mà ta lại có : EK=1/2EC

                   DH=1/2DB 

vậy EK=DB: mà theo phần a ta lại có tứ giác DEHK là HBH 

vậy tứ giác DEHK là HCN

Conan Edogawa
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Phạm Thành Đông
15 tháng 3 2021 lúc 7:13

A B C D E G H K M

Khách vãng lai đã xóa
Phạm Thành Đông
15 tháng 3 2021 lúc 7:29

a) Xét \(\Delta ABC\)có:

\(AE=BE\)(giả thiết)

\(AD=CD\)(giả thiết)

\(\Rightarrow DE\)là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DE//BC\)(tính chất) (1)

Và \(2DE=BC\)(tính chất) (2)

Xét \(\Delta GBC\)có:

\(GH=BH\)(giả thiết)

\(GK=CK\)(giả thiết)

\(\Rightarrow HK\)là đường trung bình của \(\Delta ABC\)

\(\Rightarrow HK//BC\)(tính chất) (3)

Và \(2HK=BC\)(tính chất) (4)

Từ (1) và (3)

\(\Rightarrow ED//HK\)(5)

Từ (2) và (4)

\(\Rightarrow2DE=2KH\Rightarrow DE=KH\)(6)

Xét tứ giác DEHK có: (5) và (6).

\(\Rightarrow DEHK\)là hình bình hành (điều phải chứng minh)

Khách vãng lai đã xóa
Phạm Thành Đông
15 tháng 3 2021 lúc 7:32

b) Xét \(\Delta ABC\)có 2 trung tuyến BD và CE cắt nhau tại G (giả thiết)

\(\Rightarrow\)G là trọng tâm của \(\Delta ABC\)

Do đó AG đi qua trung điểm của BC.

Mà M là trung điểm của BC (giả thiết)

Suy ra AG đi qua M.

\(\Rightarrow\)3 điểm A, G, M thẳng hàng (điều phải chứng minh).

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
1 tháng 7 2017 lúc 9:57

Ôn tập : Tứ giác

Ôn tập : Tứ giác

CAO Thị Thùy Linh
29 tháng 4 2018 lúc 10:43

Kết quả hình ảnh cho ho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GCa) Chứng minh rằng tứ giác DEHK là hình bình hànhb) Tam giác ABC có điều kiện gì thì tứ giác DEHK là hình chữ nhậtc) Nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình gì ?

a)

BD là đường trung tuyến của Δ ABC nên D là trung điểm của AC (1)

CE là đường trung tuyến của Δ ABC nên E là trung điểm của AB (2)

Từ (1) và (2) suy ra :

DE là đường trung bình của Δ ABC

=> DE // BC và DE = 1/2 BC

Δ BGC có H là trung điểm của GB và K là trung điểm của GC

suy ra HK là đường trung bình của Δ BGC

=> HK // BC và HK = 1/2 BC

Tứ giác DEHK có DE//BC, HK // BC và DE = HK = 1/2 BC

nên tứ giác

b) DEHK là hình bình hành nên

HG = GD = 1/2 HD và GE = GK = 1/2 EK

Để tứ giác DEHK là hình chữ nhật thì

HD = EK => 1/2 HD = 1/2 EK => GE = GD và GH = GK

GH = GK => 2GH = 2GK => GB = GC

Xét Δ GEB và Δ GDC có

GE = GD Góc EGB = góc DGC GB = GC => ΔGEB = ΔGDC (c.g.c) => BE = CD => 2BE = 2CD => AB = AC => ΔABC cân tại A Vậy để

tứ giác DEHK là hình chữ nhật thì

ΔABC cân tại A

c) BD ⊥ CE => HD ⊥ EK Hình bình hành DEHK có HD ⊥ EK nên DEHK là hình thoi Vậy

nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình thoi

Cao Thị Thùy Linh
29 tháng 4 2018 lúc 10:45

Kết quả hình ảnh cho ho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GCa) Chứng minh rằng tứ giác DEHK là hình bình hànhb) Tam giác ABC có điều kiện gì thì tứ giác DEHK là hình chữ nhậtc) Nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình gì ?

a)

BD là đường trung tuyến của Δ ABC nên D là trung điểm của AC (1)

CE là đường trung tuyến của Δ ABC nên E là trung điểm của AB (2)

Từ (1) và (2) suy ra :

DE là đường trung bình của Δ ABC

=> DE // BC và DE = 1/2 BC

Δ BGC có H là trung điểm của GB và K là trung điểm của GC

suy ra HK là đường trung bình của Δ BGC

=> HK // BC và HK = 1/2 BC

Tứ giác DEHK có DE//BC, HK // BC và DE = HK = 1/2 BC

nên tứ giác

b) DEHK là hình bình hành nên

HG = GD = 1/2 HD và GE = GK = 1/2 EK

Để tứ giác DEHK là hình chữ nhật thì

HD = EK => 1/2 HD = 1/2 EK => GE = GD và GH = GK

GH = GK => 2GH = 2GK => GB = GC

Xét Δ GEB và Δ GDC có

GE = GD Góc EGB = góc DGC GB = GC => ΔGEB = ΔGDC (c.g.c) => BE = CD => 2BE = 2CD => AB = AC => ΔABC cân tại A Vậy để

tứ giác DEHK là hình chữ nhật thì

ΔABC cân tại A

c) BD ⊥ CE => HD ⊥ EK Hình bình hành DEHK có HD ⊥ EK nên DEHK là hình thoi Vậy

nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình thoi

Lương Châu Anh
Xem chi tiết
Lê Nguyễn Trang Anh
Xem chi tiết
Tâm Phạm
Xem chi tiết