Tìm đa thức f(x) có bậc nhỏ hơn 4 và thảo mãn 3f(x)- f(i-x)= x^2+1
Tìm đa thức bậc nhỏ hơn 4 thỏa mãn hệ sau với 4 giá trị phân biệt của x
3f(x) - f(1-x) = x2+1
Tìm đa thức bậc nhỏ hơn 4 thỏa mãn hệ sau với 4 giá trị phân biệt của x
3f(x) - f(1-x) = x2+1
cho đa thức p(x) có bậc 4 hệ số cao nhất là 1 thỏa mãn f(1)=-5, f(3)=-15, f(-2)=65 tính 3f(-3)+f(4)
Tìm đa thức bậc nhỏ hơn 4 thỏa mãn hệ sau với 4 giá trị phân biệt của x
3f(x) - f(1-x)= x2+1
Ta thấy vế phải là phương trình bậc 2 nên:
\(\Rightarrow f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(1-x\right)=a\left(1-x\right)^2+b\left(1-x\right)+c=ax^2-x\left(2a+b\right)+a-b+c\)
\(\Rightarrow3f\left(x\right)-f\left(1-x\right)=x^2\left(3a-a\right)+x\left\{3b-\left[-\left(2a+b\right)\right]\right\}+3c-\left(a-b+c\right)\)
\(=x^2+1\)
\(\Rightarrow2a.x^2+2x\left(a+2b\right)-a+b-2x=x^2+1\)
\(\Rightarrow\left\{{}\begin{matrix}2a=1\\a+2b=0\\-a+b-2c=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-\frac{1}{4}\\c=-\frac{7}{8}\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=\frac{1}{2}x^2-\frac{1}{4}x-\frac{7}{8}\)
Vậy .......................................................................
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
Thầy cho em hỏi ạ:
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
1)
Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )
Ta có:
\(f\left(1\right)=a+b+c+d+e=0\) (1)
\(f\left(2\right)=16a+8b+4c+2d+e=0\) (2)
\(f\left(3\right)=81a+27b+9c+3d+e=0\) (3)
\(f\left(4\right)=256a+64b+16c+4d+e=6\) (4)
\(f\left(5\right)=625a+125b+25c+5d+e=72\) (5)
\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)
\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)
\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)
\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)
\(E=B-A=50a+12b+2c=0\)
\(F=C-B=110a+18b+2c=6\)
\(G=D-C=194a+24b+2c=66-6=60\)
Tiếp tục lấy H=F-E; K=G-F; M=H-K
Ta tìm được a
Thay vào tìm được b,c,d,e
1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e
có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n)
thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7
Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42
Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).
2. Thiếu dữ liệu
3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)
...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)
để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5
Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý
Tìm đa thức bậc 2 f(x) biết f(-1) = 16 và khi lần lượt chia f(x) cho các đa thức ( x – 1); ( x + 2) và ( x – 4 ) đều có số dư là 6
cho đa thức f(x) thỏa mãn điều kiện f(x)+3f(\(\frac{1}{x}\))=x2 . hãy tìm f(2)
Ta có
Thay x = 1/2 : \(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\)
Thay x = 2: \(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)
\(\Rightarrow\left[f\left(2\right)+3f\left(\frac{1}{2}\right)\right]-3\left[f\left(\frac{1}{2}\right)+3f\left(2\right)\right]=4-\frac{3}{4}\)
\(\Rightarrow-5f\left(2\right)=\frac{13}{4}\Leftrightarrow f\left(2\right)=-\frac{13}{20}\)
Ta có :
Thay x = 1/2 : ƒ (12 )+3ƒ (2)=14
Thay x = 2: ƒ (2)+3ƒ (12 )=4
⇒[ƒ (2)+3ƒ (12 )]−3[ƒ (12 )+3ƒ (2)]=4−34
Tìm đa thức bậc 3 dạng f(x) thỏa mãn f(x) chia hết cho x+2 và chia (x^2-1) thì dư x+5