\(\frac{2}{\sqrt[3]{3}-1}-\frac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\)
tính hộ mink vói ạ
Tính tổng vói n là số tự nhiên :
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{1+3}}+\frac{1}{\sqrt{1}+\sqrt{1+3}+\sqrt{1+3+5}}+....+\frac{1}{\sqrt{1}+\sqrt{1+3}+\sqrt{1+3+5}+...+\sqrt{1+3+5+...+\left(2n+1\right)}}\)
Tính tổng: \(F=\left(1+\frac{1}{\sqrt[3]{2}}\right)\left(1+\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}\right)\left(1+\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}+\frac{1}{\sqrt[3]{4}}\right)...\left(1+\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}+\frac{1}{\sqrt[3]{4}}+...+\frac{1}{\sqrt[3]{9}}\right)\)
Giải chi tiết hộ mk
Tính các tổng sau:
a)\(T=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2013}+\sqrt{2017}}\)
b)\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Ôi, trang wed không tự nhận diện được công thức latex. Mình đăng lại bài giải:
a) Ta có
\(4T=\frac{4}{1+\sqrt{5}}+\frac{4}{\sqrt{5}+\sqrt{9}}+...+\frac{4}{\sqrt{2013}+\sqrt{2017}}\)
\(=\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{5}+1}+...+\frac{\left(\sqrt{2017}+\sqrt{2013}\right)\left(\sqrt{2017}-\sqrt{2013}\right)}{\sqrt{2017}+\sqrt{2013}}\)
\(=\sqrt{5}-1+\sqrt{9}-\sqrt{5}+\sqrt{13}-\sqrt{9}+...+\sqrt{2017}-\sqrt{2013}\)
\(=\sqrt{2017}-1\)
\(\Rightarrow T=\frac{\sqrt{2017}-1}{4}\)
b) Ta có
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2-1}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2}\sqrt{1}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Tương tự ta có
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
......................
\(\frac{1}{100\sqrt{99}+99\sqrt{100}}=\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
Suy ra
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
a)\[\begin{array}{l}
4T = \frac{4}{{1 + \sqrt 5 }} + \frac{4}{{\sqrt 5 + \sqrt 9 }} + ... + \frac{4}{{\sqrt {2013} + \sqrt {2017} }}\\
= \frac{{(\sqrt 5 + 1)(\sqrt 5 - 1)}}{{1 + \sqrt 5 }} + ... + \frac{{(\sqrt {2017} + \sqrt {2013} )(\sqrt {2017} - \sqrt {2013} )}}{{\sqrt {2013} + \sqrt {2017} }}\\
= \sqrt 5 - 1 + \sqrt 9 - \sqrt 5 + ... + \sqrt {2017} - \sqrt {2013} \\
= 1 + \sqrt 5 - \sqrt 5 + \sqrt 9 - \sqrt 9 + ... + \sqrt {2013} - \sqrt {2013} + \sqrt {2017} \\
= 1 + \sqrt {2017} \\
\Rightarrow T = \frac{{1 + \sqrt {2017} }}{4}
\end{array}\]
Tính: a)\(\frac{3\sqrt{2}-\sqrt{6}}{3-\sqrt{3}}+\sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}}\)
b) \(6\sqrt{\frac{1}{3}}-\frac{\sqrt{3}-3}{\sqrt{3}}+\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{2}-\sqrt{3}}\)
c) \(\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-2\sqrt{2}\)
d) \(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
Xin giúp 4 bài trên. Cảm ơn trước ạ!
a,
\(\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}+\sqrt{\frac{\left(2-\sqrt{2}\right)^2}{\left(2+\sqrt{2}\right).\left(2-\sqrt{2}\right)}}\)
=\(\sqrt{2}+\frac{2-\sqrt{2}}{\sqrt{2}}\)
=\(\sqrt{2}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}}\)
=\(\sqrt{2}+\sqrt{2}-1\)
=\(2\sqrt{2}-1\)
còn tiếp
b=,\(\frac{6\sqrt{3}}{3}-\frac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}-\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\)
=\(6-1+\sqrt{3}-\sqrt{6}\)
=\(5+\sqrt{3}+\sqrt{6}\)
\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{3}{\sqrt{x}+3}\)
Giải hộ với ạ
ĐKXĐ: \(x\ge0;x\ne1\)
\(\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11+3x+7\sqrt{x}-6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3x+19\sqrt{x}-14}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+7\right)\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
cmr các đẳng thức :
1/\(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)
2/\(\frac{\sqrt[4]{5}+1}{\sqrt[4]{5}-1}=\sqrt[4]{\frac{3+2\sqrt[4]{5}}{3-2\sqrt[4]{5}}}\)
3/\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
giúp mik vs mik cần gấp lắm
\(y=\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{4+\sqrt{3}}{5-2\sqrt{3}}}-\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{4}}}\)
Mọi người giải hộ mình nhé. Tính giá trị biểu thức trên
tính:\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
Tính
\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}+\sqrt{5}}+.....-\)\(\frac{1}{\sqrt{8}-\sqrt{9}}\)