Chứng minh rằng số 19.8n+17 là hợp số với mọi số tự nhiên n.
Giúp mk vs!10SP cho câu tl đúng>3
Chứng minh rằng : 19.8n + 17 là hợp số với mọi số tự nhiên n.
Chứng minh rằng số \(19.8^n+17\)là hợp số với mọi số tự nhiên n
GIÚP MIK VỚI
1 , Chứng minh rằng với mọi số tự nhiên a , tồn tại số
tự nhiên b sao cho ab + 4 là số chính phương .
2 , Cho a là số gồm 2n chữ số1 , b là số gồm n + 1 chữ số , c là số gồm n chữ số 6 .
Chứng minh rằng a + b + c + 8 là số chính phương .
kết bạn vs mk nha và ai giải nhanh nhất thì mk sẽ tik cho luôn .
Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)
cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng
\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
phân tích 10^2n = (10^n)^2
10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được
\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)
=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{3^2}\)
=\(\left(\frac{10^n+8}{3}\right)^2\)
vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương
bạn cho mik hỏi câu b thì b là số gồm n+1 c/s nào
câu b bạn phân tích a = (10000...0( có 2n cs 0) -1)/9
ph b và c tương tự trong đó c=(10000..0 ( có n cs 0) -1)/9*6
chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab+4 là số chính phương
jup mik vs các bạn
Với a bất kì thì ta chọn b sao cho b=a-4
Khi đó: ab+4=a(a-4)+4
=a2-4a+4
=a2-2.2.a+22
=(a-2)2
Vậy với a E N ta luôn tìm được b sao cho ab+4 là số chính phương
Này nhé:
Ta có:
Giả sử: ab + 4 = A2
<=> A2 - 4 = ab
<=> A2 - 22 = ab
<=> (A+2)(A-2) = ab : luôn đúng với mọi a,b
=> Đpcm
Chứng minh rằng có 99 số tự nhiên liên tiếp đều là hợp số.
Giúp mk vs
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
chứng minh rằng vs mọi số tự nhiên a , tồn tại số tự nhiên b s cho ab +4 là số chính phương
Đặt \(ab+4=n^2\).
\(\Rightarrow ab=n^2-4=\left(n-2\right)\left(n+2\right)\).
Nếu \(a=n-2\)thì \(b=n+2=n-2+4=a+4\).
Vậy ta chỉ cần lấy \(b=a+4\)thì \(ab+4\)luôn là số chính phương.
chứng minh rằng với mọi số tự nhiên n thì phân số A=\(\frac{2n+3}{3n+5}\)là phân số tối giản.
CÁC BẠN GIÚP MK VS NHA. CẢM ƠN CÁC BẠN NHIẾU
Phân số \(\frac{2n+3}{3n+5}\)tối giản nếu ước chung lớn nhất của tử và mẫu là 1 hoặc -1
Gọi \(ƯCLN\left(2n+3;3n+5\right)=d\)ta có :
\(\left(2n+3\right)⋮d;\left(3n+5\right)⋮d\)
\(\Leftrightarrow\)\(3\left(2n+3\right)⋮d;2\left(3n+5\right)⋮d\)
\(\Leftrightarrow\)\(\left(6n+9\right)⋮d;\left(6n+10\right)⋮d\)
\(\Leftrightarrow\)\(\left(6n+9-6n-10\right)⋮d\)
\(\Leftrightarrow\)\(\left(-1\right)⋮d\)
Suy ra \(d\inƯ\left(-1\right)\)
Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)
Do đó \(d\in\left\{1;-1\right\}\)
Vật phân số \(\frac{2n+3}{3n+5}\)tối giản
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.