cho a+b / a- 3=b+4/b-4
tinh gt cua bieu thuc : D = a^3 +3^3 / b^3 +4^3
cho a+b /a-3 = b+4/b-4
tinh gt cua bieu thuc : D = a^3 +3^3 / b^3 + 4^3
cho bieu thuc a=-1/3+1/3^2-1/3^3+1/3^4-1/3^5+...+1/3^100 tinh gia tri cua bieu thuc b=4/a/+1/3^100
Tinh gia tri cua bieu thuc:
a, 4+11/8-5/6=
b, (1/2+4/7)-(3/7-3/10)=
\(4+\frac{11}{8}-\frac{5}{6}=\frac{96+33-20}{24}=\frac{109}{24}\)
\(\left(\frac{1}{2}+\frac{4}{7}\right)-\left(\frac{3}{7}-\frac{3}{10}\right)=\frac{1}{2}+\frac{4}{7}-\frac{3}{7}+\frac{3}{10}\)
\(\left(\frac{1}{2}+\frac{3}{10}\right)+\left(\frac{4}{7}-\frac{3}{7}\right)=\frac{4}{5}+\frac{1}{7}=\frac{28+5}{35}=\frac{33}{35}\)
ban Chitanda Eru oi to bao nhung ma nhan voi bao nhieu ma ra duoc 96
cho a+b=3 ,a*b=2 tinh gia tri cua bieu thuc 1/a^3-1/b^3
Ta có a + b = 3
=> (a + b)2 = 9
=> a2 + 2ab + b2 = 9
=> a2 + b2 = 5 (ab = 2)
Khi a2 + b2 = 5 => a2 - 2ab + b2 = 1
=> (a - b)2 = 1
=> a - b = \(\pm1\)
Đặt A \(\frac{1}{a^3}-\frac{1}{b^3}=\frac{b^3-a^3}{\left(a.b\right)^3}=\frac{\left(b-a\right)\left(b^2+ab+a^2\right)}{\left(ab\right)^3}=-\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(ab\right)^3}\)
Với a - b = 1 ; ab = 2 ; a2 + b2 = 5 ta có A = \(-\frac{1.\left(5+2\right)}{2^3}=-\frac{7}{8}\)
Với a - b = - 1 ; ab = 2 ; a2 + b2 = 5 ta có A = \(-\frac{\left(-1\right).\left(5+2\right)}{2^3}=\frac{7}{8}\)
Ta có: \(\hept{\begin{cases}a+b=3\\ab=2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=9\\ab=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2+2ab+b^2=9\\ab=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=5\\ab=2\end{cases}}\)
Khi đó: \(\frac{1}{a^3}-\frac{1}{b^3}=\frac{b^3-a^3}{a^3b^3}=\frac{\left(b-a\right)\left(a^2+ab+b^2\right)}{8}=\frac{7\left(b-a\right)}{8}\)
Ta có: \(a+b=3\Rightarrow a=3-b\) thay vào: \(\left(3-b\right)b=2\)
\(\Leftrightarrow b^2-3b+2=0\Leftrightarrow\left(b-1\right)\left(b-2\right)=0\Leftrightarrow\orbr{\begin{cases}b=1\Rightarrow a=2\\b=2\Rightarrow a=1\end{cases}}\)
Nếu \(\hept{\begin{cases}a=2\\b=1\end{cases}\Rightarrow}\frac{1}{a^3}-\frac{1}{b^3}=-\frac{7}{8}\)
Nếu \(\hept{\begin{cases}a=1\\b=2\end{cases}}\Rightarrow\frac{1}{a^3}-\frac{1}{b^3}=\frac{7}{8}\)
tinh gia tri cua cac bieu thuc
A=3a-2b\a-3b voi a\b=10\3
B=a-8\b-5 - 4a-b\3a+a voi a-b = 3 va b khac 5 b khac -4
cho bieu thuc:P=\(\frac{\sqrt{x}}{\sqrt{x}-3}\)+\(\frac{2\sqrt{x}}{\sqrt{x}-3}\)--\(\frac{3x+9}{x-9}\) voi x>= 0;x#9 .a; Rut gon bieu thuc P . b; Tinh gia tri cua bieu thuc voi \(x=4-2\sqrt{3}\)
bai 3 : cho bieu thuc : a = 500 + x va b = x - 500 , voi x = 8075
a, tinh gia tri cua a va b
b , tinh gia tri cua a + b
giai theo cach lop 4 nhe , nhanh len
a = 500 + x = 500 + 8075 = 8575
b = x - 500 = 8075 - 500 = 7575
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
cho bieu thuc A=3+3^2+3^3+3^4+...+3^100va B=3^301-1. chung minh rang A>B
Ta có: 3A = 3^2 + 3^3 + 3^4 + 3^5 +...+ 3^101
A = 3 + 3^2 + 3^3 + 3^4 +...+ 3^100
=> 3A - A = 3^101 - 3
=> 2A = 3^101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
=> A = \(\frac{3^{101}-1}{2}-\frac{2}{2}=\left(3^{101}-1\right).\frac{1}{2}-1\)
=> A < B