chứng minh rằng 2^2k-1chia hết cho 3
chứng minh rằng : nếu a là một số lẻ không chia hết cho 3 thì a^2-1chia hết cho 6
a là số lẻ
=> a2 là số lẻ
=> a2 - 1 là số chẵn
=> a2 - 1 chia hết cho 2
a không chia hết cho 3
a2 chia 3 dư 1
a2 - 1 chia hết cho 3
Vì (2;3) = 1
Vậy a2 - 1 chia hết cho 2.3 = 6 (đpcm)
Cho :2*x+3*y+1 chia hết cho 7 và 3*x-y+1chia hết cho 7. Chứng minh rằng x, y có cùng số dư khi chia cho 7
Cho p là số nguyên tố lớn hơn 3. Biết p+2 cũng là số nguyên tố. Chứng minh rằng p+1chia hết cho 6
Mn giúp mình bài này với.
Chứng minh rằng: Px =7^× + 3^× -1chia hết cho 9 ¥×€N
P(x) = 7x + 3x - 1 \(⋮9\)
Với x = 3k + 1 (k \(\inℕ^∗\))
= 73k + 1 + 33k + 1 - 1
= 343k.3 + 27k.3 - 1
= (343k.3 - 3) + 27k.3 + 2
= 3(343k - 1) + 27k.3 + 2
= 3(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
= 3.342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
=> P(x) : 9 dư 2
Với x = 3k + 2
P(x) = 73k + 2 + 33k + 2 - 1
= 343k.49 + 27k.9 - 1
= (343k.49 - 49) + 27k.9 + 48
= 49(343k - 1) + 27k.9 + 48
= 49(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.9 + 45 + 3
=> P(x) : 9 dư 3
Với x = 3k
Khi đó P(x) = 73k + 33k - 1
= (343k - 1) + 27k
= (343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k
= 342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k \(⋮9\)
Vậy P(x) \(⋮\Leftrightarrow x⋮3\)
Bài 1 Tìm n thuộc N sao cho:
a)n+6 chia hết cho n+2
b)2n+3chia hết cho n+2
Bài 2 Cho 10 mũ k-1chia hết cho 9;k lớn hơn 1 chứng minh
a)10 mũ 2k-1 chia hết cho 9
b)10 mũ 3k -1 chia hết cho 9
Bài 3 Chứng tỏ rằng phép tính sau là đúng
a)111111-222=333.333
b)với c lớn hơn 0 ac lớn hơn bc thì a lớn hơn b
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Cho 10k-1chia hết cho 19 với k>10
Chứng minh rằng:
103k-1chia hết cho 19
Đặt \(10^k-1=19n\left(n\in Nsao\right)\)
\(\Rightarrow10^k=19n+1\Rightarrow\left(10^k\right)^3=\left(19n+1\right)^3\Rightarrow10^{3k}-1=\left(19n\right)^3+38n\)
Ta thấy\(\left(19n\right)^3⋮19;38n⋮19\Rightarrow\left(19n\right)^3+38n⋮19\)
Hay\(10^{3k}-1⋮19\)
\(10^{2k}-1=10^{2k}-10^k+10^k-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
\(10^{3k}-1=10^{3k}-10^k+10^k-1=10^k\left(10^{2k}-1\right)+10^k-1⋮19\)
bài 1 chứng minh rằng với mọi stn n
a)24n+1+3 chia hết cho 5
b)24n+2 +1 chia hết cho 5
c) 92n+1chia hết cho 10
cảm ơn mọi người nha
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
chứng tỏ rằng: 109+2 chia hết cho 3
chứng tỏ rằng: 1020-1chia hết cho 9
10^9 + 2 = 100....0 + 2 = 100...02.
Tổng các chữ số của số trên là:
1 + 0 + ... + 0 + 2 = 3.
Vậy số trên chia hết cho 3 vì có tổng các chữ số chia hết cho 3 => 10^9 + 2 chia hết cho 3 (đpcm)
Bài kia làm tương tự
cho số nguyên n> 1 , chứng minh rằng n ^n - n^2 +n - 1chia hết cho ( n - 1 ) ^2
Ta có: \(n^n-1=n^n-n^{n-1}+n^{n-1}-n^{n-2}+n^{n-2}-...-n+n-1\)
\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1\right)\)
\(\Rightarrow n^n-n^2+n-1=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1\right)+\left(n-1\right).\left(-n\right)\)
\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1-n\right)\)
\(=\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)+\left(1-1\right)\right]\)
\(=\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)\right]\) (1)
Vì \(n^{n-1};n^{n-2};...;n\) và 1 đồng dư khi chia cho n-1 (dư 1)
\(\Rightarrow n^{n-1}-1⋮n-1;n^{n-2}-1⋮n-1;...;n-1⋮n-1\)
\(\Rightarrow\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)⋮n-1\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)\right]⋮\left(n-1\right).\left(n-1\right)=\left(n-1\right)^2\)
hay \(n^n-n^2+n-1⋮\left(n-1\right)^2\) (do là số nguyên và n>1)
Vậy với số nguyên n>1 thì \(n^n-n^2+n-1⋮\left(n-1\right)^2\)