Tìm GTLN của B=\(\frac{4-4x^2+4x}{5}\)
Plz làm giúp mình đi, mk tick cho. Thân <3
Tìm GTLN của biểu thức A= -x^2+4x
Làm ơn giúp mk, mk đang cần gấp
\(A=-x^2+4x=-\left(x^2-4x+4\right)+4=4-\left(x-2\right)^2\)
Ta có: \(\left(x-2\right)^2\ge0\Rightarrow4-\left(x-2\right)^2\le4\)
\(\Rightarrow A_{max}=4\Leftrightarrow x=2\)
Tìm GTLN ,GTNN :A-\(\frac{x^2+4x+6}{x^2+2x+1}\)
Ai xong đầu mk tick lun cả cách làm nha
1) chứng minh đa thức sau không có nghiệm nguyên
x^4 - x^2 + 4x + 2 = 0
2) cho a,b >o tìm GTLN của
p = ( a^2 +1 ) ( b^2 +1 )
ai làm xong trước mình tick cho
Tìm GTLN,GTNN của biểu thức
a)A=4x2+2x+1/4x2+1
b)P=4x2+4x+4/x2+2x+1
*Dùng delta
Giúp mình với nha
Tìm GTNN của biểu thức sau : \(\frac{2}{-4x^2+8x-5}\)
Giúp mình với , mình sẽ tick cho , cảm ơn nhiều ạ .
\(P=\frac{2}{-4x^2+8x-5}=\frac{2}{-\left(4x^2-8x+5\right)}\)
\(=\frac{2}{-\left(4x^2-8x+4+1\right)}\)\(=\frac{2}{-4\left(x+1\right)^2-1}\)
\(\ge\frac{2}{-1}=-2\)\(\Rightarrow P\ge-2\)
Dấu = khi \(x=-1\)
Vậy MinP=-2 khi x=-1
Tìm GTLN ( GTNN) của biểu thức:
\(\frac{x^2-4x-4}{x^2-4x+5}\)
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
Giải bài này giúp tớ nhé các bạn. Làm đúng tớ tick cho
Tìm GTNN của thương:(4x^5+4x^4+4x^3-x-1):(2x^3+x-1)
Thực hiện phép chia ta được thương là: \(2x^2+2x+1\)
Đặt \(A=2x^2+2x+1=2\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Chúc bạn học tốt.
Bài 1:Tìm giá trị nguyên của x để biểu thức A = \(\frac{4x-3}{2x+1}\)có giá trị là số nguyên
Bài 2: Tìm giá trị nguyên của x để biểu thức A = \(\frac{3}{4-x}\)đạt giá trị lớn nhất.Tìm GTLN đó
Bài 3: Tìm giá trị nguyên x để biểu thức B = \(\frac{7-x}{4-x}\)Đạt GTLN.Tìm GTLN đó
lưu ý các bn nào giải đc bài nào thì viết ra ko nhất thiết là phải cả 3 bài nhưng nếu làm cả 3 bài mk tick cho 3 cái(dùng nick phụ tick nữa)
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
Tìm GTLN của biểu thức \(\dfrac{6x^2+21x+22}{x^2+4x+4}\). Giúp mình được không ạ, mình cảm ơn trước
\(A=\dfrac{6x^2+21x+22}{x^2+4x+4}\)
\(=\dfrac{6\left(x^2+4x+4\right)-3x-2}{x^2+4x+4}\)
\(=6+\dfrac{-3x-2}{\left(x+2\right)^2}\)
\(=6+\dfrac{-3\left(x+2\right)+4}{\left(x+2\right)^2}\)
\(=6-\dfrac{3}{x+2}+\dfrac{4}{\left(x+2\right)^2}\)
-Đặt \(a=\dfrac{1}{x+2}\) thì:
\(A=6-3a+4a^2=\left(2a\right)^2-2.2a.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{87}{16}=\left(2a-\dfrac{3}{4}\right)^2+\dfrac{87}{16}\ge\dfrac{87}{16}\)
\(A_{min}=\dfrac{87}{16}\)\(\Leftrightarrow\left(2a-\dfrac{3}{4}\right)^2=0\Leftrightarrow2a-\dfrac{3}{4}=0\Leftrightarrow2a=\dfrac{3}{4}\)
\(\Leftrightarrow2.\dfrac{1}{x+2}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{x+2}=\dfrac{3}{8}\Leftrightarrow x+2=\dfrac{8}{3}\Leftrightarrow x=\dfrac{2}{3}\)