Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thảo nhi
Xem chi tiết
o lờ mờ
28 tháng 11 2019 lúc 19:12

\(P=\frac{x^3-6x^2+11x-12}{x^2-5x+4}\)

\(=\frac{\left(x^3-4x^2\right)-\left(2x^2-8x\right)+\left(3x-12\right)}{\left(x^2-4x\right)-\left(x-4\right)}\)

\(=\frac{x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)}{x\left(x-4\right)-\left(x-4\right)}\)

\(=\frac{\left(x-4\right)\left(x^2-2x+3\right)}{\left(x-4\right)\left(x-1\right)}\)

\(=\frac{x^2-2x+3}{x-1}\)

Khách vãng lai đã xóa
o lờ mờ
28 tháng 11 2019 lúc 19:14

Để P nguyên thì \(\frac{x^2-2x+3}{x-1}\) nguyên

\(\Rightarrow x^2-2x+3⋮x-1\)

\(\Rightarrow\left(x-1\right)^2+2⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;2;-1;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;3;0;-1\right\}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
28 tháng 11 2019 lúc 19:39

a) \(P=\frac{x^3-6x^2+11x-12}{x^2-5x+4}\)

\(=\frac{x^3-4x^2-2x^2+3x+8x-12}{x^2-4x-x+4}\)

\(=\frac{\left(x^3-4x^2\right)-\left(2x^2-8x\right)+\left(3x-12\right)}{x^2-4x-x+4}\)

\(=\frac{x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)}{x\left(x-4\right)-\left(x-4\right)}\)

\(=\frac{\left(x^2-2x+3\right)\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}\)

\(=\frac{x^2-2x+3}{x-1}\)

b)  x-1 x^2-2x+3 x-1 x^2-x -x+3 -x+1 2

Suy ra để P nguyên thì \(x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)
\(x\)\(2\)\(0\)\(3\)\(-1\)
Khách vãng lai đã xóa
homaunamkhanh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
18 tháng 1 2021 lúc 21:30

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)

Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên

=> 7 ⋮ x - 3

=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn 

Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên

Khách vãng lai đã xóa
homaunamkhanh
18 tháng 1 2021 lúc 21:14

(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.

( ác ) là từ ( các ) 

(gia strij) là từ ( giá trị )

Khách vãng lai đã xóa
do ngoc thanh
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Nguyễn Như Bảo An
7 tháng 12 2021 lúc 22:04

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Khách vãng lai đã xóa
Madokami
Xem chi tiết
Trần Anh Tuấn
Xem chi tiết
Umi Otaku
Xem chi tiết
trần thị minh nguyệt
Xem chi tiết
Kiệt Nguyễn
29 tháng 7 2019 lúc 11:54

a) \(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)

\(\Leftrightarrow A=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{2x^2-6x}{\left(x+3\right)\left(x-3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{3x^2-13x}{x^2-9}\)

l҉o҉n҉g҉ d҉z҉
14 tháng 10 2020 lúc 17:37

\(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)

a) ĐK : x ≠ ±3

\(=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{2x^2-6x}{\left(x-3\right)\left(x+3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3x}{x-3}\)

b) Để A < 2

=> \(\frac{3x}{x-3}< 2\)

<=> \(\frac{3x}{x-3}-2< 0\)

<=> \(\frac{3x}{x-3}-\frac{2x-6}{x-3}< 0\)

<=> \(\frac{3x-2x+6}{x-3}< 0\)

<=> \(\frac{x+6}{x-3}< 0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+6>0\\x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-6\\x< 3\end{cases}}\Leftrightarrow-6< x< 3\)

2. \(\hept{\begin{cases}x+6< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -6\\x>3\end{cases}}\)( loại )

Vậy -6 < x < 3

Khách vãng lai đã xóa
Xuân Trà
Xem chi tiết