Giải hệ phương trình:
\(x+y+\frac{1}{x}+\frac{1}{y}=4\)
\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2+y^2+x+y=4xy\\\frac{1}{x}+\frac{1}{y}+\frac{y}{x^2}+\frac{x}{y^2}=4\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\frac{1}{x+y}+\frac{1}{xy}=\frac{3}{2}\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{cases}}\)
Áp dụng bất đẳng thức Cauchy , ta có :
\(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)\ge2+2=4\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)
Xét từng cặp giá trị của x,y vào phương trình \(\frac{1}{x+y}+\frac{1}{xy}=\frac{3}{2}\)
Thấy cặp (x;y) thõa mãn đề bài là (1;1)
Vậy ......
Điều kiện xác định : \(\hept{\begin{cases}x\ne-y\\x,y\ne0\end{cases}}\)
giải hệ phương trình sau
\(\hept{\begin{cases}x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{51}{4}\\x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{774}{16}\end{cases}}\)
giải hệ phương trình:
\(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=\frac{9}{2}\\\frac{1}{4}+\frac{3}{2}\left(x+\frac{1}{y}\right)=xy+\frac{1}{xy}\end{cases}}\)
giải hệ phương trình : \(\hept{\begin{cases}\frac{4}{x+y}+\frac{1}{y-1}=5\\\frac{1}{x+y}-\frac{2}{y-1}=-1\end{cases}}\)
thô ng báo : ai giải được cho tôi bài hệ phương trình này thì tôi k 3 cái cho người đó trong 3 ngày ok , giử lời hứa ...
ĐKXĐ;: x khác -y ; y khác 1
Đặt \(\hept{\begin{cases}\frac{1}{x+y}=a\\\frac{1}{y-1}=b\end{cases}}\left(a;b\ne0\right)\)
Ta thu được hệ \(\hept{\begin{cases}4a+b=5\\a-2b=-1\end{cases}}\)
Giải hệ này dễ quá rồi -_-
bn ơi mik giải ra a = b = 1 rồi thì bạn giải tiếp giúp mik nhé ...
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
Giải các hệ phương trình:
a) \(\hept{\begin{cases}x-y+2xy=5\\x^2+y^2+xy=7\end{cases}}\)
b) \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{cases}}\)
a) \(\hept{\begin{cases}\left(x-y\right)^2=\left(5-2xy\right)^2\\\left(x+y\right)^2-2xy+xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-4xy=25+4x^2y^2-20xy\\\left(x+y\right)^2-xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=25+4x^2y^2-16xy\\\left(x+y\right)^2=7+xy\end{cases}}\)
\(\Rightarrow25+4x^2y^2-16xy=7+xy\)
\(\Leftrightarrow4x^2y^2-17xy+18=0\)
\(\Leftrightarrow xy=\frac{9}{4}\) hoặc \(xy=2\)
Từ đó tính đc x+y dễ dàng tìm được các giá trị x và y
b) Câu hỏi của Huỳnh Minh Nghĩa - Toán lớp 9 - Học toán với OnlineMath
Giải hệ phương trình
\(\hept{\begin{cases}\frac{x+1}{x-1}+\frac{3y}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{cases}}\)
\(\hept{\begin{cases}\frac{x+1}{x-1}+\frac{3y}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{cases}}\)
giải hệ phương trình
Giải hệ phương trình: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{cases}}\)
Hướng dẫn:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\left(1\right)\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\left(2\right)\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\left(3\right)\end{cases}}\)
ĐK: \(x;y;z;x+y;y+z;z+x\ne0\)
TH1: x + y + z = 0
=> y + z = - x
thế vào (1); \(\frac{1}{x}+\frac{1}{-x}=\frac{1}{2}\)vô lí
TH2: x + y + z \(\ne\)0.
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x+y+z}{xy+xz}=\frac{1}{2}\\\frac{x+y+z}{yz+xy}=\frac{1}{3}\\\frac{x+y+z}{xz+yz}=\frac{1}{4}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{xy+xz}{x+y+z}=2\\\frac{yz+xy}{x+y+z}=3\\\frac{xz+yz}{x+y+z}=4\end{cases}}\)
Đặt : x + y + z = k
=> \(\hept{\begin{cases}xy+xz=2k\left(4\right)\\yz+xy=3k\left(5\right)\\xz+yz=4k\left(6\right)\end{cases}}\)<=> \(\hept{\begin{cases}xy=\frac{1}{2}k\\yz=\frac{5}{2}k\\xz=\frac{3}{2}k\end{cases}}\Leftrightarrow\hept{\begin{cases}2xy=k\\\frac{2yz}{5}=k\\\frac{2xz}{3}=k\end{cases}}\)
Trừ vế theo vế:
=> \(\hept{\begin{cases}x=\frac{z}{5}\\\frac{y}{5}=\frac{x}{3}\\\frac{z}{3}=y\end{cases}}\)<=> \(z=3y=5x\)thế vào (1) rồi tìm x; y ; z.
\(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\)
<=> \(\frac{23}{20x}=\frac{1}{2}\Leftrightarrow x=\frac{23}{10}\)
khi đó: \(y=\frac{5x}{3}=\frac{23}{6};z=5x=\frac{23}{2}\)thử lại thỏa mãn.