tìm 2 số nguyên tố a và b biết a mũ 2 trừ đi 2b mũ 2 =1
a) Cho A=3+3 mũ 2+3 mũ 3+...+3 mũ 100.Chứng minh A chia hết cho 120
b) Cho n là số nguyên tố lớn hơn 3. Hỏi n mũ 2+2006 là số nguyên tố hay hợp số
c) Tìm các số tự nhiên x và y biết 2 mũ x+624=5 mũ y
b) n mũ 2 + 2006 là hợp số
hai câu còn lại ko bt
Hok tốt
^_^
a, \(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^4.\text{}\text{}\text{}\text{}\left(3+3^2+3^3+3^4\right)+...+3^{96}.\left(3+3^2+3^3+3^4\right)\)
\(=120+3^4.110+...+3^{96}.120\)
\(=120.\left(1+3^4+...+3^{96}\right)⋮120\)
\(\RightarrowĐPCM\)
Hok Tốt!
# mui #
B1)Cho biểu thức A= a mũ 3 + 2a mũ 2 -1/a mũ 3 +2a mũ 2 + 2a + 1
a,Rút gọn biểu thức
b,Chứng mik rằng nếu số a là số nguyên thì giá trị biểu thức tìm được của câu a,là một phân số tối giản.
B2)
a.Tìm n để n mũ 2 +2006 là 1 số chính phương
b.Cho n là số nguyên tố lớn hơn 3.Hỏi n mũ 2 +2006 là số nguyên tố hay hợp số
GIÚP MIK ĐI NHA,MAI NỘP BÀI RỒI.T_T
a) Hãy viết thêm đằng sau số 664 ba chữ số nhận được số có 6 chữ số chia hết cho 5,9,11
b) tìm số tự nhiên x, biết x là số nguyên và:
(x mũ 2 trừ 1) ( x mũ 2 trừ 4) < 0
tìm số nguyên tố x sao cho x mũ 2 trừ 1 là số nguyên tố
Tìm các số nguyên x, biết: (5x – 10) : (77x mũ 2 + 1) = 0.
A. x = 2
B. x = 0
C. x = 2 và x = 0
D. x = -2
cho a,b,c,d,e,f thuộc N sao , biết a mũ 2+b mũ 2+c mũ 2=d mũ 2+e mũ 2+f mũ 2 .Hỏi a+b+c+d+e+f là số nguyên tố hay hợp số
tìm tất cả số tự nhiên a , b nguyên tố cùng nhau , biết rằng
a+b / a mũ 2 - a nhân b + b mũ 2 = 8 / 73
1.Cho 2 số: A=2.n+5 và B=3.n+7. Chứng minh rằng A và B là hai số nguyên tố.
2. Cho tổng M=1+3+3 mũ 2+3 mũ 3+.....+3 mũ 100. Tìm số dư khi chia M cho 13 và chia M cho 40.
1
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)
\(\text{⇒1 ⋮d}\)
\(\text{⇒d = 1}\)
Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)
Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.
\(M=1+3+3^2+...+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)
mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)