Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyền thoại Amaya
Xem chi tiết
NGUYỄN THẾ HIỆP
16 tháng 2 2017 lúc 18:13

A B C D E F M N

CHÚ Ý: đề em bị sai nhé, anh đoán đề chính xác sẽ giống hình này

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN \(⊥\)AD 

Xét 2 tam giác vuông: \(\Delta\)CFD và \(\Delta\)MND có:

\(\widehat{CDF}=\widehat{MDN}\)(góc đối đỉnh)

MD=DC (cách dựng)

=> \(\Delta\)CFD = \(\Delta\)MND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, \(\Delta\)BED vuông tại E có: M là trung điểm => BM=ME=MD => \(\Delta\)BMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=\(\frac{1}{2}\)DE (ĐPCM)

Nguyễn Duy Anh
14 tháng 2 2021 lúc 16:14

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN ⊥AD 

Xét 2 tam giác vuông: ΔCFD và ΔMND có:

góc CDF = góc MDN (2 góc đối đỉnh)

MD=DC (cách dựng)

=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=1/2DE (ĐPCM)

Lê Hoàng Mỹ Duyên
Xem chi tiết
Nguyễn Duy Anh
14 tháng 2 2021 lúc 16:07

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN AD 

Xét 2 tam giác vuông: ΔCFD và ΔMND có:

góc CDF = góc MDN (2 góc đối đỉnh)

MD=DC (cách dựng)

=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=1/2DE (ĐPCM)

Khách vãng lai đã xóa
Lê Hoàng Mỹ Duyên
Xem chi tiết
Nguyen tien dat
Xem chi tiết
Nguyễn Duy Anh
14 tháng 2 2021 lúc 16:13

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN ⊥AD 

Xét 2 tam giác vuông: ΔCFD và ΔMND có:

góc CDF = góc MDN (2 góc đối đỉnh)

MD=DC (cách dựng)

=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=1/2DE (ĐPCM)

Trang Trần
Xem chi tiết
Trang Trần
23 tháng 2 2017 lúc 22:23

Cảm ơn mng!

Giải đc rồi ạ!

Nguyễn Trúc Quỳnh
Xem chi tiết
Nguyễn Duy Anh
14 tháng 2 2021 lúc 16:04

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN AD 

Xét 2 tam giác vuông: ΔCFD và ΔMND có:

ˆCDF=ˆMDNCDF^=MDN^(góc đối đỉnh)

MD=DC (cách dựng)

=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=1/2DE (ĐPCM)

Khách vãng lai đã xóa
Nguyễn Duy Anh
14 tháng 2 2021 lúc 16:05

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN AD 

Xét 2 tam giác vuông: ΔCFD và ΔMND có:

CDF^=MDN^(góc đối đỉnh)

MD=DC (cách dựng)

=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=1/2DE (ĐPCM)

Khách vãng lai đã xóa
Nguyễn Duy Anh
14 tháng 2 2021 lúc 16:08

Góc đối đỉnh là CDF và MDN

Khách vãng lai đã xóa
Trần Văn Thành
Xem chi tiết
dfghjkl1
Xem chi tiết
IS
22 tháng 2 2020 lúc 20:02

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Kudo Shinichi
Xem chi tiết
Phan Gia Huy
11 tháng 2 2020 lúc 9:30

Tử thần ác quỷ Ủa,bố mẹ bạn mới ra tù hay sao mà ko bày cách bạn ăn nói à,ko bằng đứa con nít,trẻ trâu vậy ai chơi ???

Hình tự vẽ nha bạn !! Mình trc mê vẽ hình chứ giờ nhác vẽ hình lắm

Gọi K là trung điểm BD,Kẻ KI vuông góc với ED

KB=KD;KI//BE nên I là trung điểm ED hay IE=ID ( 1 )

Dễ thấy \(\Delta BID=\Delta CFD\left(g.c.g\right)\Rightarrow ID=DF\) ( 2 ) 

Từ  ( 1 );( 2 ) suy ra đpcm

Khách vãng lai đã xóa