tìm min, max \(y=x^2+\frac{1}{x^2}-2x-\frac{2}{x}+3\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Tìm min, max và tập giá trị của hàm số:
1, y = 3sin(2x + \(\frac{\pi}{4}\) ) - 1
2, y = -5\(cos^2\) x + 3
3, y = \(\frac{5}{3\cos x+4}\)
4, y = \(\sin^2\)x - 4sinx + 8
1: Ta có: \(-1<=\sin\left(2x+\frac{\pi}{4}\right)\le1\)
=>\(-3\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)\le3\)
=>\(-3-1\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)-1\le3-1\)
=>-4<=y<=2
=>Tập giá trị là T=[-4;2]
\(y_{\min}=-4\) khi \(\sin\left(2x+\frac{\pi}{4}\right)=-1\)
=>\(2x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\)
=>\(2x=-\frac34\pi+k2\pi\)
=>\(x=-\frac38\pi+k\pi\)
2: \(0\le cos^2x\le1\)
=>\(0\ge-5\cdot cos^2x\ge-5\)
=>\(0+3\ge-5\cdot cos^2x+3\ge-5+3\)
=>3>=y>=-2
=>Tập giá trị là T=[-2;3]
\(y_{\max}=3\) khi \(cos^2x=1\)
=>\(\sin^2x=0\)
=>sin x=0
=>\(x=k\pi\)
\(y_{\min}=-2\) khi \(cos^2x=0\)
=>cosx=0
=>\(x=\frac{k\pi}{2}\)
3: \(-1\le cosx\le1\)
=>\(-3\le3\cdot cosx\le3\)
=>\(-3+4\le3\cdot cosx+4\le3+4\)
=>\(1\le3\cdot cosx+4\le7\)
=>\(\frac51\ge\frac{5}{3\cdot cosx+4}\ge\frac57\)
=>\(\frac57\le y\le5\)
=>Tập giá trị là \(T=\left\lbrack\frac57;5\right\rbrack\)
\(y_{\min}=\frac57\) khi cosx=1
=>\(x=k2\pi\)
\(y_{\max}=5\) khi cosx=-1
=>\(x=\pi+k2\pi\)
4: \(y=\sin^2x-4\cdot\sin x+8\)
\(=\sin^2x-4\cdot\sin x+4+4\)
\(=\left(\sin x-2\right)^2+4\)
Ta có: \(-1\le\sin x\le1\)
=>\(-1-2\le\sin x-2\le1-2\)
=>\(-3\le\sin x-2\le-1\)
=>\(1\le\left(\sin x-2\right)^2\le9\)
=>\(5\le\left(\sin x-2\right)^2+4\le13\)
=>5<=y<=13
=>Tập giá trị là T=[5;13]
\(y_{\min}=5\) khi sin x-2=-1
=>sin x=1
=>\(x=\frac{\pi}{2}+k2\pi\)
\(y_{\max}\) =13 khi sin x-2=-3
=>sin x=-1
=>\(x=-\frac{\pi}{2}+k2\pi\)
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
Cho x,y là hai số thực thỏa mãn \(2x^2+\frac{y^2}{4}:\frac{1}{x^2}=3\) . Tìm Max,Min của B = 2020 + xy
Bài 1: Cho 3a + 5b = 12. Tìm MAX của B= ab
Bài 2: Tìm MAX A= \(\frac{y}{\left(y+10\right)^2}\left(y>0\right)\)
Bài 3: Tìm MIN A= \(\frac{x^2+x+1}{x^2+2x+1}\)
a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5
Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).
b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40
Dấu= xảy ra khi y=10.
c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1
Dấu= xảy ra khi x=0
1)Tìm min B= \(\frac{x^2+x+1}{x^2-2x+1}\)
2) Tìm max, min P= \(\frac{x^2-8x+7}{X^2+1}\)
Tìm Min,Max
A=\(\frac{\left(x+y\right)^2}{x^2+y^2}\)
B=\(\frac{2x^2+4x-1}{x^2+1}\)
C=\(\frac{x+1}{x^2+x+1}\)
Tìm Min, Max của \(y=\frac{2x+1}{x^2+2}\)
\(y=\frac{2x+1}{x^2+2}\)
\(\Leftrightarrow yx^2-2x+2y-1=0\)(1)
Ta có: y thuộc miền giá trị của hàm số khi và chỉ khi (1) có nghiệm
Với: \(y=0\) thì x = -1/2
Với: \(y\ne0\) thì (1) có nghiệm khi: \(\Delta^'\ge0\)
\(\Leftrightarrow1^2-y\left(2y-1\right)\ge0\)
\(\Leftrightarrow-2y^2+y+1\ge0\)
\(\Leftrightarrow2y^2-y-1\le0\)
\(\Leftrightarrow-\frac{1}{2}\le y\le1\)
Vậy: Min y = -1/2 và Max y = 1
=.= hk tốt!!
\(y=\frac{2x+1}{x^2+2}\Leftrightarrow x^2y+2y-2x-1=0\)
Pt có nghiệm x<=>\(\Delta'=1-y\left(2y-1\right)=-2y^2+y+1\ge0\)\(\Leftrightarrow-\frac{1}{2}\le y\le1\)
Max y=1 \(\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)
\(Miny=-\frac{1}{2}\Leftrightarrow-\frac{1}{2}x^2-2x-2=0\Leftrightarrow x=-2\)
Tìm min, max của \(A=\frac{x^4+1}{\left(x^2+1\right)^2}\)
Min:
\(A=\frac{x^4+1+2x^2-2x^2}{x^4+2x^2+1}=1-\frac{2x^2}{\left(x^2+1\right)^2}\)
Nhận xét: \(\frac{2x^2}{\left(x^2+1\right)^2}\ge0\)
=> \(1-\frac{2x^2}{\left(x^2+1\right)^2}\ge1\)
Dấu = <=> x=0
Max:
Đặt x2=a
Đặt x-1=y
Đặt 1/y=z
Câu này nâng cao lắm, chắc mình chưa cần giải đâu.
Ra Min=1/2 <=>x=1