Tìm n thuộc N biết 65 chia n dư 5; 89 chia n dư 9
Tìm a thuộc N biết :
a : 3 dư 1
a : 4 dư 1
a : 5 dư 1
0 < a < 65
Ta có 2n+3=2(n+2)
De 2n+3 chia het cho n+2 thì phải 1chia het cho n+2
Suy ra n+2=1(loại đồ ko có n thoa màn điều kien)
Con cách nữa nhưng mình ngại viết nên bạn dùng cách này nha
Mink xin loi mink trả loi nhầm người roi
1. Cho A =abcc ; tìm A biết: A: 5 và a;b;c thuộc { 1;5;9}
2. cho A= n2 + 1 ( n thuộc N)
a/ tìm 5 giá trị của n để A chia hết cho 5
b/ tìm n để A chia hết cho 2
3. tìm số tự nhiên có 3 chữ số giống nhau biết số đó chia 5 dư 2 và chia 2 dư 1
1, Để A chia hết cho 5 thì chữ số tận cùng của A là 0 và 5
\(\Rightarrow\)c phải là 5
Chữ số tận cùng là 5 chia hết cho 5 rồi thì còn lại 2 số đầu có thể xếp lên a hoặc là b
\(\Rightarrow\)A có thể là 1955 hoặc là 9155
Tìm n thuộc N biết 555 chia cho n dư 15 còn 739 chia cho n dư 19
(1) 555 : n = x+ 15
vậy x bằng: 555 - 15= 540
(2) 739 : n = y+ 19
vậy y bằng : 739 - 19 = 720
vậy GCD của 540 và 720 là 180
VẬY n = 180
mk biết kết quả rồi nhưng cảm ơn bạn nhiều
Tìm n thuộc N biết:
Khi chia 325 chia n dư 10 còn khi chia 507 cho n dư 12
tìm n thuộc N bé nhất biết n chia cho 3 dư 1 và n chia cho 14 dư 9
tìm n thuộc N NHỎ NHẤT khác 5 biết khi chia số đó cho 70;140;350 có cùng số dư
2. Tìm n thuộc Z để
a, 2n^2 -n-7 chia hết cho n-2
b, 25n^2 - 97n +11 chia hết cho n-4
1.Tìm a,b biết x^3 + ax +b chia x+1 dư 7; chia cho x-3 dư -5
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).Số dư của phép chia này là 7 nên ta có:\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
Từ (1) và (2) ta có:\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.Viết kết quả các phép chia này ta được:\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
Bài 18:
a)Tìm số tự nhiên n có 3 chữ số biết n chia cho 20;25;30 đều dư 15 chia hết cho 41
b)Tìm số tự nhiên nhỏ nhất có chữ số tận cùng là 7;n chia 13 dư 8;n chia 19 có dư
Bài 19:Tìm n thuộc N , biết:
a)6 - 5n chia hết cho n
b)( n+4) chia hết cho (n+1)
c)3n - 5 chia hết cho n +1
d)3n +1 chia hết cho 11 - n
Mí pạn giúp mik xin hậu tạ
a)Chứng minh D chia hết cho 126 biết D = 5 + 5^2 + 5^3 + ... + 5^2016.
b) Tìm x thuộc N biết 4d + 5 = 5x
c) Tìm STN a biết a chia 11 dư 7, chia 13 dư 10.