Chứng minh : Không tồn tại số nguyên tố p sao cho: \(3^p+19\left(p-1\right)\) là số chính phương.
cho p là số nguyên tố lẻ. \(Q\left(x\right)=\left(p-1\right)x^p-x-1\). Chứng minh rằng tồn tại vô số a nguyên dương sao cho Q(a) chia hết cho \(p^p\)
Cho các số nguyên dương a,b thỏa mãn ab+1 là số chính phương. Chứng minh rằng tồn tại số nguyên dương c sao cho ac+1 và bc+1 cùng là số chính phương
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Cho các số nguyên dương a, b thảo mãn ab+1 là số chính phương. Chứng minh rằng tồn tại số nguyên dương c sao cho ac+1 và bc+1 đều là các số chính phương
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Cho 9 số nguyên dương khác nhau mà mỗi số chỉ có ước nguyên tố là 2; 3 và 7. Chứng minh tồn tại 2 số có tích là số chính phương.
1. Cho đa thức \(f\left(x\right)=x^3-3x^2+9x+1964\). Chứng minh rằng tồn tại số nguyên \(a\) sao cho \(f\left(a\right)⋮3^{2014}\)
2. Chứng minh rằng với mọi \(a\inℤ\), phương trình \(x^4-2007x^3+\left(2006+a\right)x^2-2005x+a=0\) không thể có 2 nghiệm nguyên phân biệt.
3. Tìm tất cả các số nguyên dương \(n\) sao cho \(2^n-1|3^n-1\)
Chứng minh rằng không tồn tại các số nguyên dương a,b để :
\(A=\left(a+b\right)^2-2a^2\) và \(B=\left(a+b\right)^2-2b^2\)đều là số chính phương.
Chứng minh tồn tại số nguyên tố x ; y ; z sao cho \(0
Bài này chỉ là CM tồn tại liệu có được mò không?
Bài 3: Cho 17 số nguyên dương phân biệt mà tích của chúng có đúng 4 ước nguyên tố. Chứng minh tồn tại hai số có tích là một số chính phương.
Giả sử bốn số nguyên tố đó là \(p_1,p_2,p_3,p_4\).
Khi đó các số đã cho đều viết được dưới dạng \(p_1^{a_1}p_2^{a_2}p_3^{a_3}p_4^{a_4}\) với \(a_1,a_2,a_3,a_4\) là các số tự nhiên.
Theo nguyên lí Dirichlet, tồn tại 9 số có hệ số \(a_1\) cùng tính chẵn, lẻ.
Trong 9 số này, tồn tại 5 số có hệ số \(a_2\) cùng tính chẵn, lẻ.
Trong 5 số này, tồn tại 3 số có hệ số \(a_3\) cùng tính chẵn, lẻ.
Trong 3 số này, tồn tại 2 số có hệ số \(a_4\) cùng tính chẵn, lẻ. Tích hai số này là số chính phương.
chứng minh tồn tại không số nguyên dương n thỏa mãn (n+1)(n+2)(N+3) là số chính phương
Áp dụng tính chất sau \(\left(a-1\right)\left(a+1\right)=a^2-1\)(\(a\in Z\)) ta được:
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n+2\right).\left[\left(n+1\right)\left(n+3\right)\right]=\left(n+2\right).\left[\left(n+2\right)^2-1\right]\)
Do \(n+2\) và \(\left(n+2\right)^2-1\) là hai số nguyên tố cùng nhau nên nếu \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là số chính phương thì \(n+2\) và \(\left(n+2\right)^2-1\) cũng là các số chính phương
Do n là các số nguyên dương nên \(n+2\ge2\)
Với \(n+2\ge2\Rightarrow\left(n+2\right)^2-1\) không là số chính phương
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)\) không là số chính phương