chứng minh rằng không tồn tại cặp số nguyên x,y thoả mãn x^2-2018=y^2
Chứng minh rằng tồn tại duy nhất cặp số (x; y) thoả mãn:\(x^2-2y^2=1\)(với x, y là các số nguyên tố). Tìm cặp số (x; y) đó
\(Giải.\)
\(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\Leftrightarrow\left(x+1\right)\left(x-1\right)=2y^2\left(chẵn\right)\)
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
Chứng minh rằng không tồn tại cặp số (x;y) nguyên nào thỏa mãn : 3x^2+7y^2=2002
Chứng minh rằng không tồn tại các số nguyên x; y thoả mãn đẳng thức:\(12x^2+26xy+15y^2=4617\)
Chứng minh rằng không tồn tại các số nguyên x; y thoả mãn đẳng thức:\(\text{12x^2+ 26xy + 15y^2 = 4617}\)
Chứng minh rằng không tồn tại cặp số (x;y) nguyên nào thỏa mãn
3x^2+7y^2=2002
C1 ta có 3x^2 + 7y^2 = 2002
<=> 3x^2=2002-7y^2
<=> 3x^2=7(286-y^2)
mặt khác (3;7)=1(nguyên tố cùng nhau) => x chia hết cho 7 <=> x^2 chia hết cho 7
từ đó suy ra (286-y^2) chia hết cho 7
<=> [287-(y^2+1) ] chia hết cho 7
<=> y^2+1 chia hết cho 7
giã sử y=7k +r (với 0<=r<=6
=>y^2+1=(7k+r)^2+1=7(7k^2+2kr)+r^2 +1
thử lại ta thấy với r =0;1;2;3;4;5;6 thì r^2 +1 o chia hết cho 7 => y^2+1 o chia hết cho 7
=>đpcm
cách 2
giữ 3x^3+7y^2=2002 (1)
có nghiệm nguyên x,y
từ (1) => x^2 chia hết cho 7 => x chia hết cho 7 => x => x^2=49
=> x^2 có dạng 49t^2 (t thuộc Z)
thay x^2=49t^2 vào (1)
và nhận thấy y^2>=1
=> 147t^2 <=1995
=> t^2<=13
-> t^2 = 1,4,9
với t^2=1 ...=> x^2 =49 => y^2 =279,y#z
t^2 =4 =>x^2=196 => y^2=258 (y#Z)
t^=9 => x^2 =441 -> y^2 =223)(y#Z)
đpcm
Chứng minh rằng không tồn tại số hữu tỉ x,y thoả mãn: x2 + y2=3
chứng minh rằng không tồn tại cạp số nguyên (x,y) để x2+2018=y2
chứng minh rằng không tồn tại cặp giá trị nguyên (x;y) thỏa mãn :\(x^2-2-2y^2=2011\)
Chứng minh rằng: không tồn tại các số nguyên x y , thỏa mãn x^2=2x^2-8y+3