Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TrầnHoàngGiang
Xem chi tiết
Lê Song Phương
16 tháng 9 2023 lúc 21:00

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

TrầnHoàngGiang
Xem chi tiết
Akai Haruma
16 tháng 9 2023 lúc 23:21

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

trần phương linh
Xem chi tiết
Chu Gia Minh
Xem chi tiết
minhnguvn(TΣΔM...???)
23 tháng 12 2021 lúc 9:18

a) Đặt UCLN (2n+1;2n+3)=d

TC UCLN(2n+1;2n+3)=d

=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)

=>(2n+3)-(2n+1):d

=>2:d

=>d e U(2)={1;2}

Mà 2n+1 lẻ=> d lẻ=>d=1

b) 

Đặt UCLN (2n+5;3n+7)=d

TC UCLN(2n+5;3n+7)=d

=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)

=>(6n+15)-(6n+14):d

=>1:d

=>d=1

phần c bạn tự làm nốt nhé

học tốt nhé

Khách vãng lai đã xóa
Võ Huỳnh Hạ Vy
Xem chi tiết
Luhan Hyung
30 tháng 10 2016 lúc 7:45

bạn chờ mình chút

Luhan Hyung
30 tháng 10 2016 lúc 7:51

a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra: 
3n+4 chia hết cho d ; 2n+3 chia hết cho d 
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d      (1)
Lại có : 3.(2n+3) :d 
=> 6n+9 : d      (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d

=> 1 : d

=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha

Lãnh Hạ Thiên Băng
30 tháng 10 2016 lúc 7:58

a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra: 
3n+4 chia hết cho d ; 2n+3 chia hết cho d 
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d      (1)
Lại có : 3.(2n+3) :d 
=> 6n+9 : d      (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d

=> 1 : d

=> 3n+4 và 2n+3 nguyên tố cùng nhau

Thân Đức Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 23:11

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

PHAM THI PHUONG
Xem chi tiết
nguyen van thi
28 tháng 11 2014 lúc 13:53

Gọi d là ƯCLN(2n+1;6n+5)

=>2n+1 chia hết cho d và 6n+5 chia hết cho d

=>3(2n+1) chia hết cho d và 6n+5 chia hết cho d

=>6n+3 chia hết cho d và 6n+5 chia hết cho d

=>(6n+5)-(6n+3) chia hết cho d

=>2 chia hết cho d =>ƯCLN(2n+1;6n+5) thuộc 1 hoặc 2

Nhưng loại 2 vì 2 số 2n+1 và 6n+5 là số lẻ nên không có ƯCLN là số chẳn => ƯCLN(2n+1;6n+5)=1 nên 2 số này là 2 số nguyên tố cùng nhau.

Hà Minh Huyền
Xem chi tiết
ST
16 tháng 9 2017 lúc 18:45

a, Gọi ƯCLN(5n + 3, 3n + 2) = d

Ta có: \(\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\) 

=> 15n + 10 - (15 n + 9) chia hết cho d

=> 1 chia hết cho d

=> d thuộc {1;-1}

Vậy...

b, Gọi ƯCLN(4n + 3, 6n + 4) = d

Ta có: \(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)

=> 12n + 9 - (12n + 8) chia hết cho d

=> 1 chia hết cho d

=> d thuộc {1;-1}

Vậy...

c, Gọi ƯCLN(12n + 5, 5n + 2) = d

Ta có: \(\hept{\begin{cases}12n+5⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+25⋮d\\60n+24⋮d\end{cases}}}\)

=> 60n + 25 - (60n + 24) chia hết cho d

=> 1 chia hết cho d

=> d = {1;-1}

Vậy... 

l҉o҉n҉g҉ d҉z҉
16 tháng 9 2017 lúc 18:26

Gọi d là ƯCLN của 5n + 3 và 3n + 2

Khi đó : 5n + 3 chia hết cho d , 3n + 2 chia hết cho d

=> 15n + 9 chia hết cho d , 15n + 10 chia hết cho d

=> 15n + 10 - 15n - 9 = 1 chia hết cho d

=> d = 1

Vậy 5n + 3 và 3n + 2 nguyên tố cùng nhau .  

Phương Thảo Linh 0o0
16 tháng 9 2017 lúc 18:56

Gọi ƯCLN của 5n +3 và 3n +2 là d

Ta có:

\(5n+3⋮d\)\(\Rightarrow15n+9⋮d\)

\(3n+2⋮d\)\(\Rightarrow15n+10⋮d\)

Vây 1 \(⋮d=>d=1\)

Vậy các số trên nguyên tố cùng nhau.

\(b,4n+3;6n+4\)

Gọi ƯCLN của 4n+3 và 6n+4 là d

Ta cs: 

\(4n+3⋮d\Rightarrow12n+9⋮d\)

\(6n+4⋮d\Rightarrow12n+8⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy các số trên nguyên tố cùng nhau.

Le Tra
Xem chi tiết
Vương Thị Diễm Quỳnh
24 tháng 11 2015 lúc 18:42

gọi  UCLN﴾2n + 1 ; 6n + 5﴿ là d 

ta có :

2n + 1 chia hết cho d =>3(2n+1) chia hết cho d=>6n+3 chia hết cho d

6n + 5 chia hết cho d

=> [﴾6n + 5﴿ ‐ ﴾6n + 3﴿] chia hết cho d

=>2 chia hết cho d

=> d thuộc Ư﴾2﴿ = {1;2}

Mà 2n + 1 ; 6n + 5 lẻ nên n = 1

=>UCLN(..)=1

=>ntcn