Chứng minh rằng:5n+1 và 6n+1(n€N) nguyên tố cùng nhau
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
cHỨNG MINH RẰNG
cÁC CẶP SỐ SAU LÀ SÓ NGUYÊN TỐ CÙNG NHAU VỚI MỌI n
2n+1 VÀ 6n+5
3n+2 và 5n+3
Chứng minh rằng với mọi số tự nhiên n, các số sau đây nguyên tố cùng nhau:
a) 2n+1 và 2n+3
b) 2n+5 và 3n+7
c) 5n+1 và 6n+1
a) Đặt UCLN (2n+1;2n+3)=d
TC UCLN(2n+1;2n+3)=d
=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)
=>(2n+3)-(2n+1):d
=>2:d
=>d e U(2)={1;2}
Mà 2n+1 lẻ=> d lẻ=>d=1
b)
Đặt UCLN (2n+5;3n+7)=d
TC UCLN(2n+5;3n+7)=d
=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)
=>(6n+15)-(6n+14):d
=>1:d
=>d=1
phần c bạn tự làm nốt nhé
học tốt nhé
Chứng minh rằng:với mọi n thuộc N thì hai số:
a) 3n + 4 và 2n + 3 là hai số nguyên tố cùng nhau
b) 5n +1 và 6n + 1 là hai số nguyên tố cùng nhau
giải giúp tôi với
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Chứng tỏ rằng các cặp số sau nguyên tố cùng nhau với mọi số tự nhiên n: a, 2n + 1 và 6n + 5 b, 3n + 2 và 5n + 3
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
Chứng minh rằng (2n+1) và (6n+5) nguyên tố cùng nhau và n thuộc N
Gọi d là ƯCLN(2n+1;6n+5)
=>2n+1 chia hết cho d và 6n+5 chia hết cho d
=>3(2n+1) chia hết cho d và 6n+5 chia hết cho d
=>6n+3 chia hết cho d và 6n+5 chia hết cho d
=>(6n+5)-(6n+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2n+1;6n+5) thuộc 1 hoặc 2
Nhưng loại 2 vì 2 số 2n+1 và 6n+5 là số lẻ nên không có ƯCLN là số chẳn => ƯCLN(2n+1;6n+5)=1 nên 2 số này là 2 số nguyên tố cùng nhau.
Chứng minh rằng các số sau nguyên tố cùng nhau ( n thuộc N)
a) 5n+3; 3n+2
b) 4n+3; 6n+4
c) 12n+5; 5n+2
a, Gọi ƯCLN(5n + 3, 3n + 2) = d
Ta có: \(\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\)
=> 15n + 10 - (15 n + 9) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
b, Gọi ƯCLN(4n + 3, 6n + 4) = d
Ta có: \(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)
=> 12n + 9 - (12n + 8) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
c, Gọi ƯCLN(12n + 5, 5n + 2) = d
Ta có: \(\hept{\begin{cases}12n+5⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+25⋮d\\60n+24⋮d\end{cases}}}\)
=> 60n + 25 - (60n + 24) chia hết cho d
=> 1 chia hết cho d
=> d = {1;-1}
Vậy...
Gọi d là ƯCLN của 5n + 3 và 3n + 2
Khi đó : 5n + 3 chia hết cho d , 3n + 2 chia hết cho d
=> 15n + 9 chia hết cho d , 15n + 10 chia hết cho d
=> 15n + 10 - 15n - 9 = 1 chia hết cho d
=> d = 1
Vậy 5n + 3 và 3n + 2 nguyên tố cùng nhau .
Gọi ƯCLN của 5n +3 và 3n +2 là d
Ta có:
\(5n+3⋮d\)\(\Rightarrow15n+9⋮d\)
\(3n+2⋮d\)\(\Rightarrow15n+10⋮d\)
Vây 1 \(⋮d=>d=1\)
Vậy các số trên nguyên tố cùng nhau.
\(b,4n+3;6n+4\)
Gọi ƯCLN của 4n+3 và 6n+4 là d
Ta cs:
\(4n+3⋮d\Rightarrow12n+9⋮d\)
\(6n+4⋮d\Rightarrow12n+8⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy các số trên nguyên tố cùng nhau.
Chứng minh rằng ; Các cặp số sau nguyên tố cùng nhau
a) 2n + 1 và 6n + 5
b) 3n + 2 và 5n + 3
gọi UCLN﴾2n + 1 ; 6n + 5﴿ là d
ta có :
2n + 1 chia hết cho d =>3(2n+1) chia hết cho d=>6n+3 chia hết cho d
6n + 5 chia hết cho d
=> [﴾6n + 5﴿ ‐ ﴾6n + 3﴿] chia hết cho d
=>2 chia hết cho d
=> d thuộc Ư﴾2﴿ = {1;2}
Mà 2n + 1 ; 6n + 5 lẻ nên n = 1
=>UCLN(..)=1
=>ntcn