Đề bài: Tìm 2 số tự nhiên biết tổng của chúng bằng 84 và ước chung lớn nhất của chúng bằng 6.
Bài 1:Tìm hai số tự nhiên.Biết rằng tổng của chúng bằng 66,ước chung lớn nhất của chúng bằng 6,đồng thời có một số chia hết cho 5.
Bài 2:Tìm hai số tự nhiên ,biết hiệu của chúng bằng 84 và ước chung lớn nhất của chúng bằng 12.
Bài 3:Tìm hai số tự nhiên,biết tích của chúng bằng 864 và ước chung lớn nhất của chúng bằng 6.
bài 1) tìm 2 số tự nhiên biết rằng tổng của chung là 66, ước chung lớn nhất của chúng là 6, đồng thời có 1 số chia hết cho 5
bài 2) tìm 2 số tự nhiên biết hiệu của chúng bằng là 84 và ước chung lớn nhất của chúng là 12
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài
Đính chính câu 2 \(a-b=84\) không phải \(a-b=66\)
Tìm 2 số tự nhiên biết tổng của chúng bằng 84 , ước chung lớn nhất của chúng bằng 6.
Đó là số 66 và 18
vì
66 chia hết cho 6 18 cũng chia hết cho 6 ước chung lớn nhất của 66 và 18 là 6mà 66+18=84 => hai số tự nhiên cần tìm là 66 và 18
Tìm 2 số tự nhiên biết tổng của chúng bằng 84 . Biết : Ước chung lớn nhất của chúng bằng 6
tìm 2 số tự nhiên biết tổng của chúng bằng 84 và ước chung lớn nhất của chúng là 12 ?
tìm 2 số tự nhiên biết tích của chúng bằng 84 và ước chung lớn nhất bằng 6
mk biết kết quả nhưng ko biết trình bày thế nào
tìm 2 số tự nhiên biết hiệu của chúng bằng 84 và ước chung lớn nhất của chúng bằng 12
tìm 2 số tự nhiên a và b biết tổng của chúng bằng 48 và ước chung lớn nhất của chúng bằng 6
Tìm hai số tự nhiên biết hiệu của chúng bằng 84 và ước chung lớn nhất của chúng bằng 12
Tìm hai số tự nhiên, biết tổng của chúng là 84 và ước chung lớn nhất của chúng là 6.
Gọi hai số phải tìm là a và b (a \(\le\)b). Ta có (a, b) = 6 nên a = 6a', b = 6b' trong đó (a', b') = 1 (a, b, a', b' \(\in\)N).
Do a + b = 84 nên 6(a' + b') = 84 suy ra a' + b' = 14.
Chọn cặp số a', b' nguyên tố cùng nhau có tổng bằng 14 (a' \(\le\)b') , ta được :