Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HT
Xem chi tiết
Nguyễn Linh Chi
21 tháng 10 2019 lúc 16:13

Em tham khảo: Câu hỏi của Xuân Thường Đặng - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
ßσss™|๖ۣۜHắc-chan|
Xem chi tiết
Lê Tuấn Nghĩa
8 tháng 5 2019 lúc 21:13

1. A=\(\frac{x^2-1}{x^2+1}\)

=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)

để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN 

mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0. 

khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0

zZz Cool Kid_new zZz
8 tháng 5 2019 lúc 21:20

Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)

\(=\left|x+2017\right|+\left|2-x\right|\)

\(\ge\left|x+2017+2-x\right|\)

\(=2019\)

Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)

\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)

Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)

tth_new
9 tháng 5 2019 lúc 9:59

Bài 3: (chắc thế này quá)

\(A\left(x\right)=x^1+x^3+x^5+...+x^{2019}\)

Dãy số trên có số số hạng là: (2019-1) : 2 + 1 = 1010 số hạng.

Thay x = -1 vào A(x) được: \(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+..+\left(-1\right)\) (1010 số -1)

\(=1010.\left(-1\right)=-1010\)

Vậy giá trị đa thức A(x) tại x = -1 là  -1010

Love Vương Nguyên Foreve...
Xem chi tiết
Hoàng Thị Linh
11 tháng 8 2018 lúc 20:32

a, Ta có : y^2 lớn hơn hoặc bằng 0 với mọi y

=> -y^2 nhỏ hơn hoặc bằng 0 với mọi y 

=>-2-y^2 nhỏ hơn hoặc bằng -2 với mọi y

=> H nhỏ hơn hoặc -2 với mọi y

Dấu "=" xảy ra <=>y^2=0 <=>y=0

Vậy GTLN của H là -2 tại y=0

Tử-Thần /
Xem chi tiết
Good boy
29 tháng 11 2021 lúc 19:35

GTLN của  A = 0

Đinh Anh Thư
Xem chi tiết
karipham
Xem chi tiết
Hacker
12 tháng 4 2019 lúc 20:25

A=x+2019/x thì lm sao tìm đc GTLN

karipham
12 tháng 4 2019 lúc 20:27

tui biết GTLN của nó là \(\frac{2019}{2}\)nhưng ko bt lm

Hacker
12 tháng 4 2019 lúc 21:21

x+2019/x =1 + 2019/x 

karipham
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
14 tháng 10 2020 lúc 6:00

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\div\frac{x}{x+2019}\)

ĐK : x ≠ ±1 ; x ≠ 0 ; x ≠ -2019

\(=\left(\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\frac{x^2-1}{x^2-1}\times\frac{x+2019}{x}=\frac{x+2019}{x}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
14 tháng 10 2020 lúc 7:46

b. \(A=\frac{x+2019}{x}=1+\frac{2019}{x}\) đạt giá trị lớn nhất 

<=> \(\frac{2019}{x}\) đạt giá trị lớn nhất 

<=> \(\hept{\begin{cases}x>0\\x\in Z\end{cases}}\) và x đạt giá trị bé nhất 

<=> x = 1

Khi đó A = 2020 

Khách vãng lai đã xóa
Mờ Lem
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 10 2020 lúc 22:08

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)

\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)

\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)

\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)

b) \(18A=1\)

<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))

<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)

<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32

<=> 18x2 - 72x + 90 = x3 + 6x2 - 32

<=> x3 + 6x2 - 32 - 18x+ 72x - 90 = 0

<=> x3 - 12x2 + 72x - 122 = 0

Rồi đến đây chịu á :) 

Khách vãng lai đã xóa
Mờ Lem
2 tháng 10 2020 lúc 22:08

Ý lộn == là \(\frac{x^2-2x}{x+4}\)ạ ==

Khách vãng lai đã xóa
Nguyễn Diệu Linh
Xem chi tiết
Huyền Nhi
19 tháng 2 2019 lúc 19:45

a) \(-ĐKXĐ:x\ne\pm2;1\)

Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)

b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)

\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)

Vậy với mọi x thỏa mãn x>1 thì A > 0

c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy x = -1;-2