Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Hải Yến
Xem chi tiết
tran khac hap
Xem chi tiết
SHINAGAWA AYUKI
Xem chi tiết
ミŇɦư Ἧσς ηgu lý ミ
31 tháng 10 2020 lúc 20:33

A = 11^9 + 11^8 + ... + 11 + 1

=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11

11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)

10A = 11^10 - 1

A = (11^10 - 1 ) : 10

vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .

. Vậy A chia hết cho 5

hok tốt

Khách vãng lai đã xóa
Hoàng Đức Tùng
5 tháng 8 2021 lúc 20:56

undefined

nhé bạn

Khách vãng lai đã xóa
Hương Hùng
5 tháng 8 2021 lúc 21:05
A=11^9+11^8+...+11+1 =>11a=11^10+11^9+......+11^2+11 11a-a=(11^10+11^9+...+ 11^2+11-)-(11^9+11^8+..+11
Khách vãng lai đã xóa
helloa4
Xem chi tiết
Đào Đình Phong
22 tháng 11 2021 lúc 10:29

sssssssssssss

Khách vãng lai đã xóa
helloa4
Xem chi tiết
o0o đồ khùng o0o
5 tháng 1 2017 lúc 9:11

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

nguyenvankhoi196a
6 tháng 11 2017 lúc 6:27

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

To Thi Bich Thao
29 tháng 7 2019 lúc 22:09

gbvn nngvjn

Nguyễn Huyền Trang
Xem chi tiết
Nguyễn Ngọc Tâm Như
Xem chi tiết
Nguyễn Hữu Triết
29 tháng 12 2016 lúc 9:02

1. Tính tổng:

 Số số hạng có trong tổng là:

 (999-1):1+1=999 (số)

Số cặp có là:

 999:2=499 (cặp) và dư một số đó là số 500

Bạn hãy gộp số đầu và số cuối:

 (999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400

Vậy tổng S1 = 50400

Mih sẽ giải tiếp nha

Nguyễn Hữu Triết
29 tháng 12 2016 lúc 9:05

Số tự nhiên a sẽ chia hết cho 4 vì:

 36+12=48 sẽ chia hết co 4

Số a ko chia hết cho 9 vì:

 4+8=12 ko chia hết cho 9

Phạm Đình Quốc
6 tháng 12 2020 lúc 19:21

TA tính như sau :ta tính số số hạng trước -->(999-1):1+1=999(SSH)

=>Tổng của dãy trên là :(1+999)x999:2=499500

Khách vãng lai đã xóa
hà vũ ngọc hương
Xem chi tiết
tran khac hap
Xem chi tiết
Nguyễn An Ninh
3 tháng 11 2024 lúc 9:09

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

Nguyễn An Ninh
3 tháng 11 2024 lúc 9:10

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$