Tìm tất cả các số tự nhiên n sao cho \(2n+2017\)và \(n+2019\)là số chính phương
Tìm tất cả các số tự nhiên n sao cho \(2n+2017\)và \(n+2019\)đều là số chính phương
Có: 2n+2017=a^2 (1) (a,b ∈N)
n+2019=b^2 (2)
Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)
(1) trở thành 2n+2017=(2k+1)^2
⇔ n+1008=2k(k+1)
Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2
⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)
Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)
(2) trở thành n+2019=(2h+1)^2
⇔n+2018=4(h^2+h) (3)
Có: n chia hết cho 4, 2018 không chia hết cho 4
⇒ n+2018 không chia hết cho 4
mà 4(h^2+h) chia hết cho 4
Nên (3) vô lý
Vậy không tồn tại n thỏa mãn
Tìm số tự nhiên n sao cho 2n+2017 và n+2019 đều là các số chính phương
Tìm tất cả các số tự nhiên n sao cho số : 28+211+2n là số chính phương
Lớp 8+9 : Tìm n là số tự nhiên để 2n+2017 và n+2019 là 2 số chính phương.
Ta có :
2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+2019 chia ch 4 dư 3
mà số chính phương chia cho 4 dư 0,1
=> không tồn tại n
2n + 2017 là số chính phương lẻ
=> 2n + 2017 chia 8 dư 1 ( do scp lẻ chia 8 dư 1)
=> 2n chia hết cho 8 => n chia hết cho 4
=> n + 2019 chia 4 dư 3
Mà scp chia 4 dư 0 hoặc 1
=> n + 2019 ko là scp
Vậy ko tồn tại STN n thoả mãn
Đặt \(\hept{\begin{cases}2n+2017=a^2\\n+2019=b^2\end{cases}\left(a,b\inℕ^∗\right)}\)
Dễ thấy : \(a^2\) là số chính phương lẻ, mà số chính phương lẻ chia 8 luôn dư 1. ( Điều này sẽ được chứng minh ở cuối bài làm ).
\(\Rightarrow2n+2017\equiv1\left(mod8\right)\)
\(\Rightarrow2n⋮8\) \(\Rightarrow n⋮4\)
\(\Rightarrow n+2019:4\) dư 3 hay \(\Rightarrow b^2:4\) dư 3
Lại có : một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1. ( Điều này sẽ được chứng minh ở cuối bài làm )
\(\Rightarrow n+2019\) không phải là số chính phương.
Do đó không tồn tại số tự nhiên n thỏa mãn đề.
*) Chứng minh bài toán phụ :
+) Số chính phương lẻ chia 8 dư 1 :
Ta có : \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\) chia 8 dư 1.
+) Một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1.
Ta có : \(\left(2k\right)^2=4k^2⋮4\) nên khi chia 4 có số dư là 0.
\(\left(2k+1\right)^2=4k\left(k+1\right)+1\) chia 4 dư 1.
Tìm số tự nhiên n để 2n+2017 và n+2019 đều là số chính phương \(\)
Tìm tất cả các số tự nhiên n sao cho 2n + 9 là số chính phương.
Giúpppppppppp nhanhhhhhhhhhhhh !!!!!!!!!!!! Mai cần rồi !!!!!!!!!!!!
\(\text{Tìm số tự nhiên n để 2n+2017 và n+2019 đều là số chính phương}\)
\(\text{các thánh giải giúp}\)
Tìm tất cả các cặp số tự nhiên n sao cho : \(n^2+2n+\sqrt{n^2+2n+18}+9\) là số chính phương.
Tìm tất cả các số tự nhiên n sao cho \(6n^2+10n+\sqrt{n^2+2n+52}+2018\) là số chính phương.