Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}\)
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}\)
1.Tìm x,y,z, biết :\(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\) và x-y-z = 78
2.Tìm x trong các tỉ lệ thức sau:
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
d) \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
3. Tìm các số x,y,z biết :
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x - 3y - 4z = 62
b) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và x - y + z = -15
c) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x + 5y + 2z = 100
d) 5x = 8y = 20z và x - y - z = 3
Giúp với ạ, đang cần gấp
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{x}{y+z+2}=\frac{y}{x+z+5}=\frac{z}{x+y-7}=x+y+z\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y+z}{y+z+2+x+z+5+x+y-7}\)
=\(\dfrac{x+y+z}{2\left(x+y+z\right)}\)=\(\dfrac{1}{2}\)
⇒ x + y + z = \(\dfrac{1}{2}\)
* 2x = y + z + 2
⇔ y + z - 2x + 2 = 0
⇔ (x + y + z) -3x + 2 = 0
⇒ 2 + \(\dfrac{1}{2}\) - 3x = 0
⇒ 3x = \(\dfrac{5}{2}\)
⇒ x = \(\dfrac{5}{6}\)
* 2y = x + z + 5
⇔ x + z -2y + 5 =0
⇔ (x + y + z) -3y + 5 = 0
⇔ \(\dfrac{1}{2}\) + 5 = 3y
⇒ 3y = \(\dfrac{11}{2}\)
⇒ y = \(\dfrac{11}{6}\)
* 2z = x + y - 7
⇔ x + y - 2z - 7 = 0
⇔ (x + y + z) - 3z - 7 = 0
⇔ \(\dfrac{1}{2}\) - 3z - 7 = 0
⇒ 3z = \(\dfrac{1}{2}\) - 7 = \(\dfrac{-13}{2}\)
⇒ z = \(\dfrac{-13}{6}\)
P/s: chúc cậu làm tốt!!! 18/12/2023
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{x}{y+z+2}=\frac{y}{x+z+5}=\frac{z}{x+y-7}=x+y+z\)
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{x}{y+z+2}=\frac{y}{x+z+5}=\frac{z}{x+y+7}=x+y+z\)
P/s: Lâu nay ko làm toán 7 nên ko chắc mình còn nhớ hết kiến thức đâu nhé:)) Đôi khi áp dụng sai t/c dãy tỉ số bằng nhau cũng không chừng:(( Bạn tự check.
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{y+z+2}=\frac{y}{z+x+5}=\frac{z}{x+y+7}=\frac{x+y+z}{2\left(x+y+z\right)+14}\)
Kết hợp giả thiết ta có: \(\frac{x+y+z}{2\left(x+y+z\right)+14}=x+y+z\)(*)
Với x + y + z = 0 thì từ giả thiết ta có: \(\frac{x}{y+z+2}=\frac{y}{z+x+5}=\frac{z}{x+y+7}=0\)
\(\Leftrightarrow x=y=z=0\) (cái này nhìn vô thấy ngay:D)
Với x + y + z khác 0, chia cả hai vế của (*) cho x + y + z. Ta được:
\(\frac{1}{2\left(x+y+z\right)+14}=1\Leftrightarrow2\left(x+y+z\right)+14=1\Rightarrow x+y+z=-\frac{13}{2}\)
Thay vào giả thiết ta có: \(\frac{x}{y+z+2}=\frac{y}{z+x+5}=\frac{z}{x+y+7}=-\frac{13}{2}\)
\(\Leftrightarrow\frac{x}{-\frac{13}{2}-x+2}=\frac{y}{-\frac{13}{2}-y+5}=\frac{z}{-\frac{13}{2}-z+7}=-\frac{13}{2}\)
\(\Leftrightarrow\frac{x}{-\frac{9}{2}-x}=\frac{y}{-\frac{3}{2}-y}=\frac{z}{\frac{1}{2}-z}=-\frac{13}{2}\)
Suy ra: \(\frac{x}{-\frac{9}{2}-x}=-\frac{13}{2};\frac{y}{-\frac{3}{2}-y}=-\frac{13}{2};\frac{z}{\frac{1}{2}-z}=-\frac{13}{2}\)
\(\Rightarrow x=-\frac{117}{22};y=-\frac{39}{22};z=\frac{13}{22}\)
P/s: Đã cố gắng làm rất kỹ, nhưng có lẽ khó mà tránh khỏi sai sót trong tính toán. Với cả lâu rồi ko làm toán 7 nên cũng ko chắc đâu nhé:) Tại tự nhiên hôm nãy nổi hứng nên giải thôi!
bài 1 tìm x,y,z
a,\(\frac{x}{10}\)=\(\frac{y}{15}\),x=\(\frac{7}{2}\)và x+2y-3z=20
b,2x=3y,49=57 và 4x-3y+5z=7
c,\(\frac{2x}{3}\)=\(\frac{3y}{4}\)=\(\frac{47}{5}\)và x+y+z=49
2 tìm x trong các tỉ lệ thức sau
a, \(\frac{x-3}{x+5}=\frac{5}{7}\)
b,\(\frac{7}{x-1}\)\(=\frac{x+1}{9}\)
c \(\frac{x+4}{20}=\frac{5}{x+4}\)
d,\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
bài 3: tìm các số x,y,z
a,\(\frac{x}{y}=\frac{7}{10}=\frac{z}{9}\)
b,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\) và x-y+z=-15
c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
bài 4 tìm các số x,y,z
a,5x=8y=20z và x-y-z=3
b ,\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và -x+y+z=-120
bài 5 tìm x,y,z biết
và xyz=20
bài 6 tìm x,y,z biết
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)và x2 + y2 -z2 =585
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
1. Tìm x trong các tỉ lệ thức sau :
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
b)\(\frac{7}{x-1}=\frac{x+1}{9}\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
d) \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
2. Tìm các số x, y, z biết :
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và \(x-3y+4z=62\)
b) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và \(x-y+z=-15\)
c) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và \(2x+5y-2z=100\)
d) \(5x=8y=20z;\)và \(x-y-z=3\)
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y+2}{z}=x+y+z\)
hình như đề sai thì phải
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y+2}{z}=x+y+z\)