C/m với mọi số nguyên tố p>3 thì số \(a=3n+2+2020p^2\) là hợp số ( n là số tự nhiên)
CMR:
a) Nếu b là số nguyên tố khác 3 thì A=3n+2+2014b2 là hợp số với mọi số tự nhiên n
b) Nếu p và 8p2+1 là các số nguyên tố thì 8p2+2p+1 là số nguyên tố
c) Nếu k là số tự nhiên lớn hơn 1 thỏa mãn k2+4 và k2+16 là các số nguyên tố thì k chia hết cho 5
CMR: nếu p là số nguyên tố lớn hơn 3 thì A=\(3n+2+2014p^2\)
là hợp số với mọi số tự nhiên n
Chứng tỏ rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau:
a) n + 3 và n + 2;
b) 3n + 4 và 3n + 7;
c) 2n + 3 và 4n+ 8.
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
Chứng minh rằng với mọi số tự nhiên n thì 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
Với mọi số tự nhiên n thì 3n + 2 và 15n + 7 là số nguyên tố cùng nhau.Đúng hay Sai ? Vì sao?
Gọi d là ƯCLN(3n+2; 15n+7)
=> 3n+2:d;15n+7:d
=>5(3n+2)-(15n+7):d
=> 15n+10-15n-7:d
=> 3 \(:\) d =>d \(\in\) (1;3)( vì d là UCLN nên chỉ có thể là số dương)
Do trong 3n+2 và 15n+7 sẽ có 1 số chẵn và 1 số lẻ => ƯC(3n+2;15n+7)\(\ne\) 2
Vậy d=1
=> 3n+2 và 15n+7 là 2 số nguyên tố cùng nhau
Nếu như 3n+2 và 15n+7 là 2 số nguyên tố cùng nhau
=> ƯCLN(3n+2;15n+7)= 1 (cũng có thể là -1 nhưng vì n là số tự nhiên nên ƯCLN của chúng chỉ bằng 1)
Gọi ƯCLN(3n+2;15n+7)=d
=> 3n+2 chia hết cho d và 15n+7 cũng chia hết cho d
=> 5(3n+2) chia hết cho d và 15n+7 cũng chia hết cho d
=> 15n+10 chia hết cho d và 15n+7 cũng chia hết cho d
=> (15n+10)-(15n+7) chia hết cho d
=> 3 chia hết cho d
=> d=1;3
Vậy ƯCLN(3n+2;15n+7) có thể bằng 1 và cũng có thể bằng 3
=>Chúng chưa chắc là 2 số nguyên tố cùng nhau
Nếu sai thì các bạn thông cảm nha
nếu đã đăng thì đừng có kiểu như z để mà kiếm ,thik k đén z thi đây này bảo tui thik cho chứ tôi rất ghết những người như p ,mk ns để z thôi chứ ko muốn cãi nhau gì đâu
chứng minh rằng với mọi số tự nhiên n thì 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Giả sử: (2n+5;3n+7)=d
2n+5=3(2n+5)=6n+15 chc d
3n+7=2(3n+7)=6n+14 chc d
1 chia hết cho d
=> d=1 vậy 2n+5 và 3n+7 nguyên tố cùng nhau
Với mọi số tự nhiên n thì 3n + 2 và 15n + 7 là số nguyên tố cùng nhau.Đúng hay Sai ? Vì sao ?