Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sơn Tùng
Xem chi tiết
Kinder
Xem chi tiết
Yeji
Xem chi tiết
Lê Tài Bảo Châu
10 tháng 3 2020 lúc 20:27

Bài 2:

A B C M N P

a) Xét tam giác BMC và tam giác MCN có:

Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN 

\(\Rightarrow S_{BMC}=S_{MCN}\)

\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)

Xét tam giác ABC và tam giác BMC có:

Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM

\(\Rightarrow S_{ABC}=S_{BMC}\)(2)

Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)

CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)

\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)

\(=7S_{ABC}\left(đpcm\right)\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
10 tháng 3 2020 lúc 21:18

Bài 3: 

Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:

\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)

Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)

\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)

\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)

\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)

\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)

Khách vãng lai đã xóa
Lê Tài Bảo Châu
10 tháng 3 2020 lúc 21:28

anhdun_•Ŧ๏áйツɦọς•

Ý thưc không mua được = tiền

 Cop thì phải gửi link hoặc đường dẫn nhé bạn

Khách vãng lai đã xóa
Nguyễn Anh Hào
Xem chi tiết
Nguyễn Anh Hào
Xem chi tiết
Diệu Anh Hoàng
Xem chi tiết
Panda Gấu
24 tháng 11 2017 lúc 20:31

Xét 2 tam giác ABC và tam giác A'B'C có:

CA = CA'

CB = CB'

Góc ACB = góc A'CB' (2 góc đối đỉnh)

Suy ra: tam giác ABC = tam giác A'B'C

Khánh Linh
Xem chi tiết
Băng Bùi
Xem chi tiết
Nhuân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2022 lúc 22:51

a: Xét ΔABC và ΔDEC có

CA=CD

\(\widehat{ACB}=\widehat{DCE}\)

CB=CE
Do đó:ΔACB=ΔDCE

b: Xét tứ giác ABDE có 

C là trung điểm của AD

C là trung điểm của BE

Do đó: ABDE là hình bình hành

Suy ra: AB//DE

c: Xét ΔAMC và ΔDNC có 

AM=DN

\(\widehat{MAC}=\widehat{NDC}\)

AC=DC

Do đó: ΔAMC=ΔDNC

d: Xét tứ giác AMDN có 

AM//DN

AM=DN

Do đó: AMDN là hình bình hành

Suy ra: Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường

mà C là trung điểm của AD

nên C là trung điểm của MN

Nhuân Nguyễn
23 tháng 4 2022 lúc 10:52

https://hoc24.vn/cau-hoi/1cho-tam-giac-abc-co-2-duong-trung-tuyen-bm-va-cn-cat-nhau-tai-g-chung-minh-bm-cn-dfrac32bc2cho-tam-giac-abc-d-la-trung-diem-ac-tren-bd-lay-e-sao-cho-be2ed-f-thuoc-tia-doi-cua-tia.5863553679489

trl câu này hộ mik với chiều nay cần dùng rkhocroi