Trên các cạnh CA, CB của tam giác ABC, lấy tương ứng các điểm B', C' thoả mãn \(\frac{CB'}{B'A}=2\); \(\frac{CA'}{A'B}=3\). Gọi I là giao điểm của AA' và BB'. Chứng minh rằng với điểm M bất kì ta luôn có \(\overrightarrow{MI}=\frac{1}{3}\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MB}+\frac{1}{6}\overrightarrow{MC}\)